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Chapter 1

Introduction

1.1 Problem description and main goals

Computer systems are pervasive in everyday life and often carry responsibility for human lifes, e. g. in
airplane autopilots or train control systems for railways. Such safety-critical systems must thus adhere
to very high quality requirements concerning safety, reliability and availability. Hence, a very high
effort has to be put into verification, validation and certification. The necessary measures to ensure
the required high quality of the software of safety critical system are regulated through standards (e.g.
CENELEC EN 50128 for the railway domain, DO178B for the avionics domain, as well as IEC 26262
for the automotive domain) that must be adhered to during the development process. The use of
formal methods in the software development process is highly recommended by the standards. They
allow to model and verify important and safety relevant logical functionality of a software at an early
point during the development process and independently from hardware platforms used later on for
deployment of systems. It is important to notice here that state-of-the-art systems are almost always
composed from other distributed (component) systems (system-of-systems (SoS)). This is, however,
still a challenge for formal methods when scalability to real industrial applications is regarded.

The goal of VerSyKo is the development of a general and universal approach to modeling and
verification of software of distributed safety critical embedded systems; an approach that is inno-
vative for the industrial practice and adresses the scalibility problem. The project focuses on the
model based development and analysis of asynchronously communicating embedded control systems
that are composed from components that operate synchronously. This system paradigm is known as
GALS (globally asynchronous-locally synchronous) architecture. For complex safety relevant con-
trol tasks this is the most preferred solution: in the nodes of the distributed system one has controllers
performing specialized tasks in hard real time by operating cyclically and in a synchronous way. For
such a controller the model based development approach of SCADE is an attractive solution, which
provides code generation, (formal) verification and test automation. Today, the relevance of the syn-
chronous paradigm has been widely acknowledged in the scientific communities. Moreover, attractive
alternatives to SCADE – such as synchronous interpretations of UML2 or Matlab/Simulink models –
are also available, reducing the risk for industry to invest into this paradigm, which represents a new
technology according to the state of the art in many companies.

However, for a whole distributed system, a synchronous implementation is neither realistic from
a technical point of view nor desirable from the point of view of applications. Instead, locally syn-
chronous nodes are integrated through a surrounding layer of software (often called glue code) that
provides the necessary infrastructure for asynchronous communication. As a result, the SCADE (or

1



any other purely synchronous) formalism cannot be applied to a system of systems. Within VerSyKo
we will close this methodological gap between synchronous component systems and asynchronous
system of systems through domain specific modeling formalisms. The main emphasis is upon mod-
eling and specification (with and without explicit consideration of real time and stochastic aspects
pertaining random component failures), verification, validation and test. Domain specific formalisms
are developed as UML 2.x profiles. They incorporate graphical representations and user friendly
syntax for specification of GALS systems tailored towards system engineers with background in the
respective application domain.

The main idea to address the complexity issues of GALS system is to provide for each syn-
chronous component an abstract model in the form of a contract that can be locally verified for the
component (e. g., for components modeled in the SCADE formalism by the formal verification engine
provided by SCADE). The network of all component contracts then forms an abstract GALS model
against which a requirement can be formally verified.

Another goal of the project is to provide tools for effective system testing: in an SoS scenario,
local components of the GALS system network will have been thoroughly tested and even formally
verified before their integration into the SoS network. These local verification results are denoted by
guaranteed behavior of the associated local synchronous components. In the current approach to
SoS testing applied in practice today it has to be criticised that the resulting tests frequently just “re-
do” variants of the HW/SW integration tests already performed by component suppliers, so that the
system-level tests fail to increase the confidence into overall system correctness and effectiveness. It
is therefore an explicit goal of this project to elaborate a systematic strategy for exploiting guaranteed
behavior in the design of system verification goals and test strategies: documented proven behavior
helps to avoid duplication of HW/SW integration tests on system level, and at the same time serves
as counter examples or as means to strengthen contracts during the abstract GALS model verification
process.

To evaluate all methods, languages and tools developed by VerSyKo we will use two case studies
provided by the industrial partners; one case study from the railway domain and one from the avionics
domain.

1.2 Overview of main concepts/tools developed by VerSyKo

The goal is VerSyKo is to develop a framework for specification and verification of GALS systems.
This specification framework is described in Sections 4 and 5. It allows to specify the synchronous
components of a system and how they are composed to form the whole system. For each synchronous
component an interface with its input and output data is specified. Components are composed by
connecting their outputs with inputs of other components. To each component its implementation in a
synchronous language (e. g. SCADE) is associated. In order to make verification possible the behavior
of each component is described by one or more contracts. Each contract is either specified as a formula
in linear temporal logic or by a synchronous state machine. Contracts are thought as an abstraction of
the complete behavior of a concrete component, the latter of which is given by its associated SCADE

model. So a GALS systems is specified as a “network of contracts” in our framework called abstract
GALS model.

There is a special form of contract called a guaranteed behavior. Such a contract specifies behav-
ior of a component that the corresponding SCADE model is known to fulfil. This could be behavior
verified by testing or formal verification by the supplier of a component before integration into the
GALS system.
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Our specification formalism supports multiple instances of components. This is necessary because
GALS systems often contain many instances of certain—possibly very simple—components (see for
example our avionics case study in Section 12.1).

In addition to the components (their instances) and the connections between them one also spec-
ifies verification goals. They express system requirements (in the form of safety properties) that the
integrated GALS system has to satisfy. While for a single synchronous component linear temporal
logic and synchronous automata are sufficient, on the global level one needs to be able to formulate
properties that refer to real time, and so on the global level we have a dense time semantics. Whenever
verification goals do not refer to real time formal verification can be performed with an analysis tool
based on a interleaving semantics (PROMELA/SPIN). Otherwise a real time formalism liked UPPAAL
timed automata is necessary.

The overall architecture of the framework consists of three layers as shown in Fig. 1.1.

SCADE component 1

...

SCADE Design 

Verifier C code

PROMELA 

UPPAAL

SCADE

observer

PROMELA

UPPAAL

SCADE model

SCADE component n

code 

generator

Test case 

generation

GALS 

verification
simulation

GALS translation 

language (GTL)

counterexample

test cases

...
Domain specific modeling kDomain specific modeling 1

Ac trado Liquidus suffragium. Dito abeo solum captus 

fastigate, se Contentus gaza eduro redigo, se Cuneus aura 

stupeo tam ac Despero sedulo de Agrarius. Solito nego 

sepulcrum vos Ergo nam ualeo lex desero. Orno quasi nox 

inclitus ubi sator ubi Ibi subsanno ago remandatum viva ala 

Alius. Pala iam, voluptuosus Didicerat, sesquimellesimus 

Lama nam administratio Tumulosus, nos ne Prognatus prex 

edo Agger trunco, poeta aula dum dono tueor iam typus 

dummodo sciscitor. Faber for Neglectum ut heu do 

infrequens, profiteor ius Perpetuus stilla seu pax sufficientia 

jus far rego promus per fragilitas iur.

Figure 1.1: Framework for verification, validation and test of GALS systems

The top layer is a domain specific modeling language to specify GALS systems. This layer uses
a mixture of graphics and text for specification. It is based on a UML profile and prototypical tool
support is developed in Enterprise Architect1. This is described in detail in Section 4.

On the middle layer we have a textual form of the specification of a GALS system. For this
VerSyKo develops a specification language for GALS systems called GALS Translation Language
(GTL). Its purpose is to have a stable language core so that (1) on top of it one can build extensions

1Enterprise Architect is an UML case tool developed by Sparx Systems http://www.sparxsystems.com.
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and user friendly graphical respresentations like the one we develop on the first level and (2) various
model transformations to test automation and formal verification formalisms and tools can be defined.
We describe the syntax and semantics of GTL in Section 5.

From the GTL level there are four kinds of model transformations considered in VerSyKo. We
briefly describe them here; the corresponding details and algorithms are described in Section 7.

The purpose of the first transformation is local verification of components, i. e., the formal verifi-
cation that components (given by their SCADE models) satisfy their contracts. So this transformation
translates the contracts of each component into a synchronous observer for the component, and uses
the SCADE Design Verifier (DV) (the formal verification component of SCADE) to prove that com-
ponents satisfy their contracts. This transformation ignores any guaranteed behaviors of a component
as those are already known to hold for the components. SCADE DV has limitations because its proof
engine is based on a SAT solver and because it uses the SCADE syntax to specify properties for formal
verification. So there is only a fragment of the GTL language that can be translated. Within VerSyKo
we also plan to use bounded model checking for this kind of local verification. Here a model transfor-
mation that takes a SCADE model of a component and the contracts of the component and produces
input for a bounded model checker will be implemented.

The second kind of transformation is for the verification of GALS systems. So the purpose is to
verify the verification goals for a GALS system. This transformation translates the abstract GALS
model (“network of contracts”) to an appropriate analysis tool to perform this formal verification.
Within VerSyKo we will develop two such model transformations. One uses PROMELA/SPIN as
backend for formal verification, and this allows to verify verification goals that do not refer to real
time. The second one uses UPPAAL timed automata as backend and this allows the verification of
real time properties. Once these transformations are implemented in prototypical form we will also
investigate how well the two different verification backends perform.

It is interesting to note that the guaranteed behaviors also play a special rôle for this GALS veri-
fication. In a first verification attempt they may not be translated to the verification backend. Instead
they can be used for automatic abstraction refinement in the case of “false negatives” as explained
next in connection with the third model transformation.

The third model transformation makes use of the C integration in SPIN. Its main purpose is to
eleminate “false negatives” within the verification results. False negatives are spurious counterex-
amples produced by a verification backend to show that a verification goal does not hold for the
abstract GALS model while it is actually true for the corresponding concrete GALS model (“network
of implementations”). For the SPIN verification backend we can make use of the C integration in
PROMELA to recognize false negatives. This works as follows: suppose we are given an error trace
from the formal verification of a verification goal. Then our third model transformation integrates the
C code generated from all SCADE models for the components of a GALS system into one PROMELA

model. Now one simulates this model with the given error trace to see whether the simulation indeed
exhibits erroneous behavior. If not then one has found a false negative, which is an indication that the
contracts of the components were not strong enough to force the verification goal. In this case one
can use guaranteed behaviors to strenthen the contracts. This means that the formal verfication of the
whole GALS system is rerun but this time taking into account one or several guaranteed behaviors as
additional contracts. In addition one might also use the error trace produced by the previous verifica-
tion for strengthening contracts, as it was verified by model simulation that this trace does in fact not
occur with the SCADE implementations.

Finally, the fourth kind of transformation in Fig. 1.1 above is for test case generation. Here the
abstract GALS model is understood as a test model for the integration test of the components. So a
test case generator extracts test cases from this model which can then drive a test environment (e. g. the

4



above simulation model in PROMELA or RT-Tester2) in which the concrete GALS model is tested.

1.3 Related Work

Numerous works are devoted to combining synchrony with asynchrony, or to extend synchronous
modeling towards less synchronous applications (see e. g. [18] for a summary on work on synchronous
languages).

The concept of a GALS system was first investigated by Chapiro [30]. The GALS paradigm has
mainly been studied in connection with hardware systems (see e. g. [13, 19]). More recently, GALS
is also investigated in connection with software systems. For example, the formal verification of
GALS systems by a combination of synchronuous and asynchronouous formalisms appears in several
different works:

(1) Thivolle and Garavel [41] explain the basic idea and show the advantages of the GALS approach
by applying it to the verification of a communication protocol. The paper explains how syn-
chronous components can be understood as functions and how these components can be integrated
into an asynchronous verification tool . In contrast to our work in VerSyKo this work does not
develop a language for the specification of GALS systems, and components are not abstracted by
contracts as in our work. The paper only treats one example where synchronous components are
integrated into a GALS system.

(2) Doucet et al. [38] describes a translation from the synchronous language SIGNAL to PROMELA.
The verification of translated GALS models is then performed using SPIN. The idea to use con-
tracts as abstractions of synchronous components and formally verify those contracts within the
synchronous formalism is new in our work in VerSyKo.

(3) “Communicating Reactive State Machines” [86] are another formalism for modelling and veri-
fication of GALS systems. The code is translated to PROMELA and verified using SPIN. The
described system is comprised of a graphical editor, a simulator and a verification engine. Apart
from the well researched method of slicing, no further optimization techniques are being dis-
cussed.

(4) The “IF toolset” [25] introduces a formalism for the specification of asynchronous systems. This
formalism is based on components and their composition by connections. That work does not
focus on GALS systems but rather on a formalism that can integrate many different design for-
malisms.

We now mention three approaches to deal with asynchrony which are less related to the work in
VerSyKo.

The first approach to dealing with asynchrony is to extend synchronous formalisms. For example,
“Multiclock Esterel” [85] extend the Esterel synchronous language by a possibility to supply several
clocks for different components. However, this formalism remains fully synchronous and every model
can be translated into an equivalent Esterel model.

Secondly, a different line of research deals with compiling synchronous programs to produce dis-
tributed, not strictly synchronous code which is correct-by-construction. One example of this is [83].

2RT-Tester is the real time test tool developed by Verified Systems
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Thirdly, an approach we do not follow in VerSyKo is to use synchronous formalisms to model
asynchrony. This idea goes back to R. Milner [73, 74]. The modeling tool Model-Build [15, 16] and
the Polychrony workbench [68] are based on this idea and also the work in [54, 63, 76].

It is well-known that formal verification of synchronous (component) programs, in particular
SCADE models, can be performed by using synchronous observers to specify properties (see [53, 55]).
An application of this approach in an industrial context is for example [36]. Further work on formal
verification of SCADE models concerns formal safety analysis (see [2] and [50]). We are not aware
of work that uses abstraction of components in connection with formal verification in SCADE.

The concept of systems of systems (i. e., systems being composed of components) also appears in
numerous works. For example, one formal model of a system component are interface automata [6].
While this formalism deals well with composition and refinement the components have asynchronous
behavior in contrast to what we study in VerSyKo.

Using contracts as specifications for parts of a program or system is also not a new idea; see for
example work on rely/guarantee logic [64]. The idea to abstract systems components by contracts
appears recently for example in [45, 44]. The specification language used there is based on UML and
the work does not deal with synchronous components and GALS systems.

So the various ingredients (contracts for abstraction, synchronous verification, GALS systems) of
our work are well-established in the literature. However, to the best of our knowledge these ingredients
have not been brought together in one single practical framework. It is this gap that we intend to fill
with VerSyKo.
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Chapter 2

Prerequisites

In this section we recall those concepts, languages and tools that form the background for the work in
VerSyKo that we present in the subsequent sections.

2.1 SCADE

The SCADE tool suite (Safety-Critical Application Development Environment) is a model-based de-
velopment framework for safety-critical software. It supports certification of systems according to
common standards from the aviation and rail transportation industries.

2.1.1 SCADE modelling language

The SCADE modeling language is a synchronous and dataflow-oriented language based on LUS-
TRE [52], and was extended by safe state machines [9]. The SCADE semantics is based on the
“synchronous hypothesis” which states that the calculation of a model’s clock cycle does not con-
sume any time. Of course, this assumption is a simplification and cannot be fulfilled by real systems.
Nevertheless, all logical operations and causal interrelations may be modelled. For the practical use,
the simplifying assumption only implies the following restriction: The calculation time used by the
model within one cycle must be smaller than the cycle time allocated to one clock cycle. The SCADE

language is deterministic and there are no run-time effects. Each language construct has a graphical
representation in the editor of the tool suite. An brief overview of the language constructs follows
below (for further details see the SCADE tutorial and language reference):

Data: SCADE permits the handling of structured data. All data structures are static. It is possible to
build structures and arrays from the basic types (real, int, bool). The modeling language is strongly
typed.

Data-flow modeling: The SCADE modelling language includes the usual Boolean logic (and, or, not
etc.) and arithmetic (+,−, ∗, etc.) operators to form expressions on dataflows. A conditional operator
(if-then-else) allows to switch between two dataflows according to the value of a Boolean dataflow.
In addition, the temporal operator fby (“followed by”) allows to access data flow values of past clock
cycles. There are operators for accessing structures and arrays including a dynamically indexed array
access. However, there is no way of explicitly describing loops. Instead there are the “algebraic loops”
Map and Fold, which are well-known in functional programming. Map is used to apply an operator
with a certain input data type to an array of that data type element-wise. With Fold, calculations may
be accumulated over an array. Fig. 2.1 shows an example of a simple SCADE model.
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Figure 2.1: SCADE model of a simple counter

State machines: The state machines in SCADE are synchronously clocked, hierarchic state machines,
so called safe state machines [9].

They look similar to UML state charts. However, an important difference is the strictly syn-
chronous semantics: In each clock-cycle and in each (parallel) state machine precisely one state and
precisely one transition is active and being carried out. Cyclical dependencies between model ele-
ments are not permitted and are, at code generation time, treated like syntax errors. Fig. 2.2 illustrates
an example of a state machine. The two means of description, data flow and state machines, are fully
integrated and thus may be combined in any way.

Figure 2.2: A state machine in SCADE

2.1.2 SCADE Tool Suite

The SCADE suite provides extensive tool support for the SCADE modelling language. We list the
main features:
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Graphical Editor: As already mentioned, each syntactic model element has a graphical represen-
tation. In the SCADE editor, these graphical elements can be used for modelling. Also, a textual
modelling language may be used.

Code Generator: The code generator creates a C code from SCADE models. This code genera-
tor is qualified for the development of safety-related software in accordance with the standards DO-
178B [37], up to Level A, and with CENELEC EN 50128 [27], up to SIL 3/4.

Simulator/Debugger: This feature allows running the code generated from a SCADE model, to test
it on the model level and to debug it. The simulator may be controlled via TCL scripts and provides
an automation interface.

Model Test Coverage: This tool component allows measuring the structural coverage of a given
model by a test suite. SCADE models may automatically be instrumented for measurements accord-
ing to two different coverage criteria: Decision Coverage (DC) and Modified Condition/Decision
Coverage (MC/DC). Other criteria may be easily supplied by the user for (self-modelled) libraries.

Design Verifier (SCADE DV): This tool component allows the formal verification of safety properties
of SCADE models. As this feature plays an important role for VerSyKo we will describe it a bit more
detailed in the next subsection.

Gateways to other tools: The SCADE suite provides a number of gateways to exchange data with
other tools. The requirements gateway permits the linking of SCADE model elements with their
requirements which are, for instance, recorded in a tool such as DOORS. Also, classically coded parts
of the software and test cases may be linked.

Other gateways link the SCADE suite with Rhapsody, Simulink and ARTiSAN.

2.1.3 Formal Verification using SCADE DV

The behavior of a SCADE design model can be given as a transition system T = 〈S, I,→〉, where
S is a set of states, I ⊆ S is a set of initial states and→ ⊆ S × S is the transition relation, see [2].
For efficiency reasons, the SCADE DV transforms a design model into a set of Boolean and linear
arithmetic formulas that symbolically represent T . If P denotes a state predicate, i.e. s |= P ⇔ s ∈
P , SAT-based model checking enables to verify safety properties 1:

∀s0, s1, . . . sn ∈ S : I 3 s0 → s1 → · · · → sn ⇒ sn ∈ P.

In contrast to other approaches, the SCADE DV does not offer a temporal logic but properties have
to be modeled as synchronous observers using the same language operators as for the design. This is
illustrated in Fig. 2.3.

The synchronous observer is simply a SCADE operator having as input the inputs and outputs
of the SCADE design to be verified and as output a Boolean data-flow. SCADE DV then verifies
that this output is always true (i.e., the constant Boolean flow with value true). To perform formal
verification SCADE DV uses the SAT based proof engine of Prover Technologies (http://www.
prover.com). Notice, however, that more general temporal properties, notably unbounded liveness
properties, cannot be automatically verified using this SAT-based approach.

1Safety properties express that the system always stays in a good or ”safe” state.
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Design
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system inputs system outputs

Figure 2.3: A state machine in SCADE

2.2 PROMELA/ SPIN

SPIN is a general tool for verifying the correctness of distributed software models in a rigorous and
mostly automated fashion. It was written by Gerard J. Holzmann and others in the original Unix group
of the Computing Sciences Research Center at Bell Labs, beginning in 1980. SPIN stands for Simple
PROMELA Interpreter.

Systems to be verified are described in PROMELA (Process / Protocol Meta Language), which
supports modeling of asynchronous distributed algorithms as non-deterministic automata [59]. Prop-
erties to be verified are expressed as Linear Temporal Logic (LTL) formulas, which are negated and
then converted into Büchi automata as part of the model-checking algorithm. SPIN supports the
verification of safety properties (“Something bad will never happen”) as well as liveness properties
(“Something good will eventually happen”).

The SPIN tool uses an “explicit-state model checking” algorithm, i.e. it explores every reachable
state of a system to verify whether the properties to be verified hold or not. If a property does not
hold, then a counter-example in form of an execution trace leading to the illegal state is generated. In
addition to model-checking, SPIN can also operate as a simulator, following one possible execution
path through the system and presenting the resulting execution trace to the user.

SPIN also offers a large number of options to further optimize the model-checking process for
speed and memory, such as:

• partial order reduction [47];

• state compression [58];

• bistate hashing (instead of storing whole states, only their hash code is remembered in a bitfield;
this saves a lot of memory but voids completeness);

• weak fairness enforcement;

• use of slicing-techniques to allow distributed model-checking on multi-processor systems [60].

Unlike many model-checkers, SPIN does not actually perform model-checking itself, but instead
generates C sources for a problem-specific model checker. This technique saves memory and improves
performance, while also allowing the direct insertion of chunks of C code into the model.
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2.3 Timed Automata and UPPAAL

UPPAAL is a model checking tool for dense real-time, developed jointly by UPPsala and AALborg
university groups. First conceived in 1995, it has undergone a large number of optimizations and
benchmark analyzes to make it applicable to a larger set of problems. Today it is widely used for
educational purposes and has a sound reputation in industrial application.

The UPPAAL tool features a graphical editor, a simulator, and a verifier component. The verifier
allows several user configurations on state space exploration, where the optimal configuration usually
depends heavily on the system under investigation. Verification results can be used as input to the
simulator, which allows to trace and explore unexpected model behavior.

The modeling language is an extension of the timed automaton formalism by Alur et al. [8]. UP-
PAAL supports parallel operation of several state machines, that can synchronize on global variables,
synchronization channels (hand-shake), or time. States can be equipped with (downward closed)
invariants on clock variables. Additional annotations – like urgent or committed states or channel
urgency – are powerful concepts to steer the timing behavior of a network of state machines and ef-
fectively reduce the size of the state-space to be explored. In the recent years more and more C-style
constructs were added to the model syntax, including arrays, structured data types, and user functions.

The logical language consists of a small subset of timed CTL (TCTL) [8]. Untimed local proper-
ties are based on the automaton syntax, i.e. are Boolean expressions over variable values, automaton
locations, and clock equations. Temporal properties are constructed from local properties by applica-
tion of temporal operators (in a restricted way). The strongest construct is the unbounded response
φ --> ψ, which states that a state where local property φ holds is always (eventually) followed by a
state where local property ψ holds. The possibility of adding observer automatons allows to verify a
wide range of interesting system properties.

While a large number of optimization techniques have found application in the UPPAAL tool, the
most prominent ones might be the following:

• avoiding of expansion to the full symbolic state space (called region graph in [8]); rather use a
compact representation, which includes efficient data types for clock relation representation

• restriction of supported verification formulas to a subset of verifiable properties, that still allow
for efficient model checking algorithms

The success of the tool is at least partially owed to the careful selection of modeling language exten-
sion, which do not break these.

2.4 Satisfiability Modulo Theories

The Satisfiability Modulo Theories (or SMT for short) problem is a decision problem for formulas
which extend first-order logic with certain theories. Its instances are a generalization of the boolean
satisfiability problem (called SAT), because every SAT problem is also a SMT problem. On a funda-
mental level, the SMT problem asks: “Given a formula ϕ, is there a valuation of the variables in ϕ
such that ϕ becomes true?”.

In recent years, computer programs (so called solvers) have become increasingly efficient in solv-
ing SMT problems. A proposed standard, to which many SMT solvers adhere, is called SMTLib[14].
It specifies a communication protocol based on LISP data-structures to formulate problems and re-
ceive answers from the solver. Not only can modern SMT solvers check the satisfiability of a given
formula, they can also
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• Provide a valuation for the variables of the formula which make the formula true.

• Extend or reduce the formula to facilitate incremental solving of problems.

• Declare new data types and functions which can then be used in formulas.

By using the SMTLib standard, application developers can make the SMT solver exchangeable and
thus profit from the multitude of different SMT implementations currently existing.

2.5 LLVM

LLVM, which once was an acronym for “Low Level Virtual Machine” (now it’s the full name of the
project), is a collection of modular and reusable compiler and toolchain technologies. In the context
of VerSyKo, two components of the LLVM framework are relevant:

1. The LLVM intermediate representation (“IR”) language is high-level assembler language. Un-
like most assembler languages, it is platform-independent and uses a static single assignment
(“SSA”) form instead of a register-based notation.

2. Clang is a compiler which can be used to translate C- and C++-programs into the LLVM-IR.
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Chapter 3

GALS System-Level Validation

3.1 System-Level Verification Approach

As indicated in the introduction the VerSyKo approach to system-level verification is as follows (fur-
ther details are described in Section 8):

• The system-level verification goal Φ is specified as a (timed) LTL formula expressing the
desired behavior of the GALS system.

• The behavior of each synchronous component C in the GALS network is abstracted by its
contract ΦC which is expressed by an LTL formula (or other modeling techniques which are
equivalent to expressing such a formula).

• From the network of contracts an abstract GALS model MG is derived. This consists of a
network of concurrent components C ′, such that each C ′ shows the most non-deterministic
behavior still satisfying ΦC .

• It is verified by means of property checking whether MG satisfies Φ. We say that a verification
succeeds if property checkig shows MG |= Φ and the verification fails, otherwise.

• As additional verification artifacts, local test and verification results obtained during compo-
nent verification and validation (V&V, for short) are provided as guaranteed behavior βC by
component suppliers. Again, βC may be expressed as an LTL formula.

3.2 Verification Threats

Recall that the objective of validation is to check whether the system is adequate for its intended
purpose, while verification checks the consistency of development artifacts with a reference specifi-
cation (which may also be a model). The validation verdict is based on the collection of verification
results achieved, in combination with specific validation activities, such as tests or formal verifications
investigating the effectiveness of the system’s operation in its intended environment1.

From the point of view of GALS system validation the verification on system-level as investigated
in this project poses three threats, which we call verification threats (VTH). Potential root causes
leading to these threats will be analyzed in the sections below.

1These tests and verifications complement the ones already performed during verification.
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1. VTH 1: The verification fails because the implemented GALS system network is inadequate for
the system-level specification. This is the “normal” verification, failure analysis and correction
cycle that should finally lead to an improved system implementation.

2. VTH 2: The verification fails though the implemented GALS system network is adequate for
its purpose. This situation is called a false negative: a correct system is rejected due to a
verification failure which should not have occurred.

3. VTH 3: The verification succeeds though the implemented GALS system network is inadequate
for its purpose. This situation is called a false positive: if not detected by system validation, an
inadequate implementation will be accepted and become operative.

3.3 Root Causes for Verification Threats

In Fig. 3.1 a root cause analysis for the verification threats introduced above is shown in the form of
a cause-consequence graph. Each arrow A → B in this figure has the meaning “A may cause B”.
The root causes are represented in Fig. 3.1 by the grey-shaded boxes possessing outgoing arrows only.
Their meaning is defined as follows:

• Erroneous verification goal. The GALS system-level verification goal Φ is inadequate for
the ultimate goals of system validation, that is, the properties expressed by Φ are not the ones
required for the intended purpose of the system.

• Component modeling failure. A synchronous component has been modeled in a way that the
implied behavior is not adequate for the GALS system.

• Manual implementation failure. The component (or some part of it) has been programmed in
a manual way, and during this process a failure was injected into the implementation.

• Contract inconsistency. The contract describes a behavior which is inconsistent with the true
behavior of the component.

• Contract weakness. The contract is consistent with the true component behavior, but asserts
weaker properties than the ones actually fulfilled by the component.

• HW/SW integration failure. During HW/SW integration a failure is injected, such as faulty
linkage of relocatable code, insufficient register word length for the occurring mathematical
operations or firmware and microcode errors.

If VTH 1 applies, the GALS system-level verification fails due to a “real” failure of the system.
This must have been caused by at least one erroneous component. The component’s failure may either
be reflected already in its model, or it may have been injected in a manual implementation step not
captured by the model. Observe that in any case the component’s contract must have captured the
erroneous behavior, because otherwise the GALS system-level verification would not have failed.

A false negative (VTH 2) may have been caused by an erroneous GALS system-level verification
goal, or by inadequate contracts. Both inconsistent or weak contracts may cause false negatives: in
the former case the contract implies erroneous component behavior though the component will really
perform in an adequate way; in the latter case the contract is consistent with the true component
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Figure 3.1: Root causes for verification threats.

behavior but too weak to prove the system-level verification goal. Typical variants of inadequate
contracts will be discussed below.

Verification threat VTH 3 (false positive) applies in situations where at least one component is
faulty but the system-level verification fails to detect this. This can be caused by an erroneous system-
level verification goal or by a contract inconsistency which does not reflect a component’s true faulty
behavior. Observe that a contract weakness may never cause a false positive because it is always con-
sistent with the true component behavior. Moreover, VTH 3 may be caused by a HW/SW integration
failure which leads to component behavior which is even inconsistent with the software code.

3.4 Validation of System-Level Verification Results

From the perspective of system validation it is crucial to detect the presence of verification threats
VTH 1, 2, 3 and abolish their causes. To this end, it has to be investigated first how to find out
whether VTH 1, 2 or 3 are present in a verification result.

3.4.1 Detection of False Negatives

Since both VTH 1 and VTH 2 lead to a system-level verification failure, it has to be decided after
occurrence of this failure which of the two threats applies. The following techniques can be applied
to identify false negatives. The negative model checking result on system level is associated with an
error trace π = 〈s0, s1, s2, . . . , sn〉, where each si is a valuation function mapping each interface
symbol addressed in the abstract GALS model to its current value. Since π is a legal finite compu-
tation trace of the model MG and MG only consists of components C satisfying their contracts ΦC ,
computation π is consistent with each of these contracts,

∀C : π |= ΦC .

Note that a contract ΦC may not necessarily address all interface variables ofC in its LTL formula.
We require, however, that the contract interface specification contains C’s complete interface. As a
consequence, each interface symbol x of C is in the domain of the valuation functions si, but the
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model checker may have assigned a random value to si(x) if x is not further restricted by the LTL
formula ΦC .

False negatives caused by contract inconsistencies. Now suppose that the false negative has been
caused by a contract inconsistency. This can be uncovered in the following ways:

• If some component C is associated with a complete formal model MC which is consistent with
the true behavior of C, but C’s contract ΦC is faulty, the inconsistency between ΦC and its
model MC can be simply uncovered by “local” model checking of contract ΦC against the
model MC , which will result in MC 6|= ΦC .

• If no complete modelMC exists the guaranteed behavior βC – if provided by the supplier – may
be exploited: if π 6|= βC then the error trace π is inconsistent with the assertions βC already
established, so π is not a trace of C. There can be two root causes for this inconsistency.

1. The contract ΦC is faulty.

2. A contract of another component C0 is faulty and C0 produces data consumed by C. The
output data of C0 in π is consistent with the faulty contract ΦC0 , but violates the (correct)
assumptions about admissible inputs in contract ΦC .

False negatives caused by contract weaknesses. Next assume that the false negative has been
caused by a contract weakness of component C. This can be uncovered as follows:

• If a complete formal model MC of C exists it can be shown that π is not a trace of this model,
π 6|= MC .

• If guaranteed behavior βC is defined for C, the contract can be refined by ΦC ∧ βC since the
guaranteed behavior must be consistent with the contract. The refined contract may be harder
to evaluate during model checking, but it may show that error trace π does not exist.

False negatives caused by erroneous system-level verification goals. If the false negative has been
caused by an erroneous system-level verification goal Φ, this can be identified by validating the error
trace π and finding out that this trace should really be considered as legal, i.e. π is a correct trace of
the system composed of components C.

3.4.2 Detection of False Positives

Analyzing again the cause-consequence graph of Fig. 3.1 leading to false positives (VTH 3) yields the
following case distinctions:

• If the false positive has been caused by contract inconsistencies while the system-level verifica-
tion goal Φ is adequate, it is again necessary to uncover this inconsistency. As explained above
in the case of false negatives, this can be detected by checking ΦC against its model MC and
uncovering MC 6|= ΦC or by proving that ΦC ∧ βC has no solution.

• If the false positive has been caused by an inadequate system-level verification goal Φ only
guaranteed behavior in combination with simulations may help to uncover the failure situation:
a system-level computation π fulfilling Φ may contradict a guaranteed behavior βC of some
system component. Observe that C is not necessarily a component associated with a faulty
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contract; the contradiction may have been caused by another component contributing to π in a
way that violates the requirements of C.

3.4.3 Summary of Validation Obligations With Respect to Verification Results

Summarizing, the following activities should be performed to validate system-level verification re-
sults:

• All contracts ΦC of components C associated with formal models MC have to be checked with
respect to validity of MC |= ΦC .

This task can be performed by model checking.

• All components C associated with guaranteed behaviors βC have to be checked with respect to
consistency between contract and guaranteed behavior. This means to prove that solutions of
ΦC ∧ βC exist.

This task can be performed by SAT or SMT-solving, respectively.

• All error traces π rejected by the system-level verification goal Φ have to be checked with
respect to consistency with guaranteed behaviors, π |= βC .

• All simulation traces π consistent with the system-level verification goal Φ have to be checked
with respect to consistency with guaranteed behaviors, π |= βC .

3.5 Contract Validation

3.5.1 Contract Insufficiencies

As elaborated above, contracts of local components in the GALS network may be insufficient in two
ways.

• Contracts may be inconsistent to their underlying detailed models.

• Contracts may be too weak to allow for the verification of the global GALS verification goal.

In any case an insufficient contract may lead to verification failures (false negatives or false positives)
when trying to prove the global GALS verification goal.

In the sections below we classify typical patterns of inconsistencies and weakness that we know
from practical experience to occur in contract specifications. We will then explain how each of these
insufficiencies can be uncovered, exploiting local and global model checking techniques as well as
the guaranteed behavior assertions available in contract specifications.

A frequently occurring pattern for contracts represented by LTL formulas is

G(φ⇒ ψ)

(Whenever φ holds, ψ is ensured). In particular, this pattern occurs in specifications for safety-critical
systems. We will therefore analyze inconsistencies and weaknesses using this specification pattern.

3.5.2 Contract Inconsistencies

Table 3.1 below describes typical inconsistencies between contracts and their underlying detailed
models.
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No. Correct Formula Inconsistent Formula Description
I1 G(φ⇒ ψ) G(φ⇒ ψ′) It is erroneously assumed that condition φ has effect

ψ′, whereas the real effect expressed in the model is
ψ. Formulas ψ and ψ′ only differ in Boolean and/or
arithmetic operators and/or brackets.

I2 G(φ1 ∧ φ2 ⇒ ψ) G(φ1 ⇒ ψ) A desired effect ψ is assumed to occur already under
condition φ1, while the detailed model only guaran-
tees ψ if the stronger condition φ1 ∧ φ2 is fulfilled.

I3 G(φ1 ⇒ ψ1) G(φ1 ⇒ ψ1 ∧ ψ2) A pre-condition φ1 is assumed to achieve a stronger
effect ψ1 ∧ ψ2 than what is really guaranteed by the
model (ψ1).

I4 G(φ1 ⇒ ψ1 ∨ ψ2) G(φ1 ⇒ ψ1) It is erroneously assumed that condition φ1 always
implies effect ψ1, whereas the model will only guar-
antee ψ1 to be among the possible effects, so ψ2 may
be observed instead of ψ1.

Table 3.1: Typical inconsistencies in LTL contract specifications.

3.5.3 Contract Weaknesses

Table 3.2 describes typical weaknesses of contracts. This means that the contract specification is
consistent with the underlying model, but it does not express all the properties which are necessary to
prove the global GALS verification goal.
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No. Correct Formula Weaker Formula Description
W1 G(φ⇒ ψ1 ∧ ψ2) G(φ⇒ ψ1) The model guarantees that φ will have effects ψ1 ∧

ψ2, while the contract only lists the effect ψ1.
W2 G(φ1 ∨ φ2 ⇒ ψ1) G(φ1 ⇒ ψ1) The model guarantees that effect ψ1 will occur if ei-

ther φ1 or φ2 are ensured. The contract, however,
only captures occurrence of effect ψ1 in case of pre-
condition φ1.

W3 G(φ1 ⇒ ψ1) G(φ1 ∧ φ2 ⇒ ψ1) The contract assumes that ψ1 will only occur if both
φ1 and φ2 are fulfilled, while the model already
guarantees ψ1 to occur if φ1 holds.

W4 G(φ1 ⇒ ψ1 ∨ ψ2)
G(φ1 ∧ φ2 ⇒ ψ1)
G(φ1 ∧ φ3 ⇒ ψ2)

G(φ1 ⇒ ψ1 ∨ ψ2) The contract only expresses (correctly) that condi-
tion φ1 yields effect ψ1 or effect ψ2. For the global
GALS verification, however, the stronger properties
are required, which can guarantee either ψ1 or ψ2

under stricter conditions φ1 ∧ φ2 and φ1 ∧ φ3, re-
spectively.

Table 3.2: Typical weaknesses in LTL contract specifications.
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Chapter 4

Domain Specific Contract Modeling
Language for Users

4.1 Objectives

As indicated in Fig. 1.1, the objective of the GALS translation language GTL (Section 5) is to provide
a formalism for specification of contracts and system requirements which is close to the level of ab-
straction required by simulators, verification and test tools. In contrast to this, the Contract Domain
Specific Language (CDSL) has the goal to facilitate the elaboration of contract networks and system
requirements for the end user. The “ingredients” of the CDSL have been identified by analysis of the
case studies presented in Sections 12.1 and 12.2 and other embedded system models used by Veri-
fied Systems International GmbH for the purpose of testing distributed embedded systems [80, 81].
While the expressive power of the CDSL is equivalent to that of the GTL, the former is syntactically
richer, in order to provide adequate representation “instruments” for the different modeling objectives
required from the end users’ perspective. From the description of the CDSL → GTL transformation
in Section 4.5 it will become apparent that these syntactic elements can all be mapped to the structural
capabilities, formula and state machine expressions available in the GTL.

The syntactic elements of the CDSL have been motivated by the following insights.

• Some aspects of contracts depend on hidden states. These types of assertions are often more
easily expressed by state machines than by LTL formulas.

• Though always representable by state machines or LTL formulas, it is often more convenient to
specify stateless input-output relationships by means of decision tables.

• The efficiency of the verification process on GALS system level is facilitated and made more
effective if contracts can optionally express guaranteed behavior about local components of
the GALS network (see Section 4.3).

• A mixed graphical and textual representation of contract and system specifications is preferred
by end users who are often familiar with formalisms like SCADE, UML or Matlab/Simulink.

• Graphical representations should not force users to represent multiple similar nodes and their
interfaces in the GALS system network in an explicit way1. It is more suitable to depict “rep-
resentatives” (or, formally, classes) of concrete object and interface collections in the graphical

1Just as users are reluctant to explicitly represent many instances if the same class in a UML object model.
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contract network description and use tabular instantiation rules indicating how the network is
unfolded by multiple instantiation of the representatives.

4.2 Abstract Language Description

In the following we sketch the CDSL language in more detail. We use EBNF-style2 notation to explain
the syntactic elements. The “⊕” operator denotes a simple composition of elements.

<CONTRACTNETWORK> ::= <CONTRACTNET>
⊕ <INTERFACE>+

⊕ <CONSTANTDEFINITIONS>
⊕ <INSTANTIATION>

<CONTRACTNET> ::= <SYNCHRONOUSSTRUCT>+
︸ ︷︷ ︸
asynchronously connected

⊕ <CONNECTOR>∗

<SYNCHRONOUSSTRUCT> ::=
(
<CONTRACTCLASS>

∣∣ <COMPOSITESTRUCT>
)

⊕ <GUARANTEEDBEHAVIOUR>∗

<COMPOSITESTRUCT> ::= <CONTRACTCLASS>+
︸ ︷︷ ︸
synchronously connected

⊕ <CONNECTOR>∗

<CONTRACTCLASS> ::= <INPUTVARS> ⊕ <OUTPUTVARS> ⊕ <INTERNALVARS>
⊕ <CLASSCONSTRAINT> ⊕ <CONTRACT>

<GUARANTEEDBEHAVIOUR> ::= <LTLFORMULA>

<CLASSCONSTRAINT> ::= <LTLFORMULA>∗

<CONTRACT> ::=
(
<LTLFORMULA>

∣∣ <STATEMACHINE>
)

where
<CONSTANTDEFINITIONS> is a set of symbolic constants (parameters),
<INTERFACE> is the abstract definition of data flow (structured data),
<CONNECTOR> is a directed arrow associated with an <INTERFACE>,
<*VARS> is a set of variables (respectively input, output, or internal),
<STATEMACHINE> is a state machine description without parallelism, and
<LTLFORMULA> is one Linear-Time-Logic Formula interpreted over state machine

states and variables

Figure 4.1: EBNF-style description of the CDSL, root element is <CONTRACTNETWORK>.

The crucial part of the language definition in Figure 4.1 is that all nodes in a contract net, i.e. the
<SYNCHRONOUSSTRUCT> elements, are asynchronously connected with each other. One node of
the net may be described as a synchronous composition of components. The guaranteed behavior is

2EBNF is a shorthand for Extended Backus-Naur Form, see e.g. [84].
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given in form of LTL formulas (e.g. invariants), and can be accumulated (corresponding to logical
“and”).

A contract class follows the class stereotype. The different categories of variables are listed
explicitly, since input and output variables correspond to the connectors, i.e., the interfaces. The
behavioral restriction on a class—i.e., the contract— is made explicit either via an LTL formula or a
state machine definition.

Similar to the contract class, the interface is seen as a template, that has to be instantiated appro-
priately. The instantiation commonly defines the concrete instances of classes and interfaces.

State Machines. State machines may decompose hierarchically, but without parallelism (architec-
tural hierarchy). States (or super-states) can be annotated with entry- or do-actions, which can be
defined either via assignment expressions or via decision tables for reasons of brevity.

Transitions can be guarded with boolean expressions that have to evaluate to true in order to
enable a transition. The states can be equipped with constraints. A states cannot be entered if this
would violate any constraint; a state has to be left if one of the contraints would be violated otherwise.

For our purpose, the state machines are deterministic in the sense that there in any state there is at
most one transition that is enabled. If two or more transitions would be enabled according to guards
and contraints, then priorities associated with transitions resolve this situation deterministically.

A complete example for the CDSL is given in connection with the case study in Section 12.1, see
Figure 12.2 for the <CONTRACTNETWORK>.

4.3 Specifying and Exploiting Guaranteed Behavior

4.3.1 Guaranteed Behavior in Contract Specifications

Guaranteed behavior is a part of a contract specification expressing a property P of the local sys-
tem which has been verified in a trustworthy way so that counter examples occurring during system
verification and contradicting P imply that either

• C’s contract has not been adequately specified, or,

• another component has previously violated the assumption made by C, so that C is no longer
obliged to fulfill its contract.

The concept of guaranteed behavior naturally arises in a scenario where a large GALS system is
integrated by a main contractor or system integrator, while the components are provided by different
suppliers who have performed thorough verification, validation and test activities on their component,
but without consideration of causal dependencies of the global system.

• The integrator specifies the contract network for the GALS system with the objective of GALS
system verification. For this purpose the local contracts specified by the integrator for each node
may be highly non-deterministic, that is, under-specified. Only those behavioral aspects of each
component are captured that seem relevant for the system-level verification.

• The verification results obtained by the sub-contractor may be optionally added to each compo-
nent’s contract as guaranteed behavior to support validation of the contract network.
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• Analyzing the guaranteed behavior, integrators may investigate which facts have already been
established on local components, so that they do not have to be re-verified on system level. As
a consequence integrators will direct their system-level verification activities to those which are
not immediate consequences of guaranteed behaviors.

• If system-level verification implies the existence of system computations (arising, for example,
from counter examples produced by a model checking tool) contradicting one or more guar-
anteed behavior assertions, integrators can conclude that their network of contracts has been
inadequately specified (cf. the discussion in Section 3.4).

These aspects of guaranteed behavior utilization during system-level verification are explained in
more detail in the sections to follow.

4.3.2 Patterns of Guaranteed Behavior

Guaranteed behavior may be based on

• formal verification of component models or/and component code, and,

• tests that have been performed with the software or with the integrated HW/SW system and that
have passed their evaluation criteria.

When focusing on safety properties, the former case may be typically expressed by LTL properties
of the form

G(φ⇒ ψ)

(“Whenever condition φ is fulfilled in a state of component C, the component will ensure ψ”). The
latter case is typically represented by formulas of the form

F(φ ∧ ψ)

(“Finally the pre-condition φ for the given test purpose has been reached, and from there on the
expected reaction ψ of C could be observed”).

In many situations the application of the equivalence class principle can be applied, so that all sys-
tem states fulfilling some condition φ are adequately represented by the set of system states fulfilling
φ1, . . . , φk which have been visited during the tests for the objectives F(φi ∧ψi), i = 1, . . . , k. If this
is the case,

k∧

i=1

(φi ⇒ φ)

holds3. If the results ψi obtained in these tests are consistent with ψ, that is,

k∧

i=1

(ψi ⇒ ψ)

it is admissible, according to existing standards for safety-critical systems verification, to assume that
also G(φ⇒ ψ) is guaranteed behavior, established by these tests.

3In rare cases the tests are even exhaustive in the sense that only k states exist satisfying φ, and these states are charac-
terized by the conditions φi, i = 1, . . . , k.
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4.4 Realization with Enterprise Architect

We employ the computer-aided software engineering tool Enterprise Architect (EA) [69] for the cre-
ation of CDSL models. While this is generally a tool used for round-trip engineering of software
systems, we focus on its modeling facilities only. As such, Enterprise Architect is well suited for
modeling tasks using the Unified Modeling Language UML 2.0.

We utilize UML Composite Structure Diagrams firstly to decompose a system of systems into
individual systems running asynchronously, and secondly to decompose a subsystem into separate
functional tasks running synchronously and in parallel. Hence the top-level composite structure di-
agram represents the globally asynchronous view of the entire system, each subsequent composite
structure diagram will represent the functional decomposition of a locally synchronous system. The
possibility to further decompose synchronous system components for the purpose of contract specifi-
cation is motivated by the fact that some contracts are very hard to express as LTL formulas over the
component viewed as a black box, while they can be elegantly expressed by a synchronous parallel
composition of “smaller black boxes” and internal interfaces, each sub-component associated with an
LTL formula or a state machine.

In this sense, UML Classes are used to represent the elements of the decomposition on each level.
Classes may be annotated with attributes and methods to aid modeling of functionality. Since modeled
classes representing subsystems may have multiple instances within the system of systems, attributes
are also used to uniquely identify system instances as well as their respective inputs and outputs.
Section 12.1.3 elaborates this.

UML Interfaces are used to describe data exchange between components on each decomposition
level. Again, multiple instances of interfaces are possible on the global asynchronous level. Hence
they may contain unique identifiers as well as their payload for data exchange.

In order to specify interface ownership and usage, classes must expose UML Provided Inter-
faces for ownership and UML Required Interfaces for usage. Typically, these exposed interfaces are
parametrized over a class’ unique identifier in order to specify data flow topology.

For readability and maintenance purposes, composite structure diagrams may declare UML Enu-
merations to define model constants.

The behavior of leaf components (i.e. classes without further decomposition into composite struc-
tures) is specified using UML State Charts. These are assumed to follow the semantics put forward
by David Harel [56].

When applicable, the user may annotate the model with guaranteed behavior on all levels of de-
composition. This is done by inserting the appropriate GTL-specifications into the model. Guaranteed
behavior will then be represented as a (partial) textual description of a system or system component.

Furthermore, the overall verification goals need to be specified in order for a model to be of
use. As with proven behavior, verification goals are currently given in textual GTL form. They are
specified as an annotation to the entire model.

Example of a Contract Network. We illustrate the Enterprise Architect usage with parts of the the
Level Crossing case study (explained in detail in Section 12.2).

In Fig. 4.2 part of the contract network is shown in UML modeling style. All visible Contract-
Classes belong to the SynchronousStruct that describes the system under test.

The Connectors are represented by the interface stereotype. The association of class instance
variables with the interface is resolved by the labelling of the corresponding ports. For example,
the interface “s DATA0” connects four instances of “strassensignal” with one instance of the
“ueberwachungssignal”. Consequently, it contains four integer values (“values:int[4]”)
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Figure 4.2: Part of the contract network corresponding to the level crossing case study.

where index i corresponds to instance i (0..3) of “strassensignal”. This is made explicit by
the association “s DATA0.value[id ss] = Zustand0[id ss]”.

On the side of the “ueberwachungssignal”, the complete array of values is then associ-
ated with “ZustandStrassensignal” (of type “int[4]”). For the association “Zustand-
Strassensignal[id us]”, the index “[id us]” is equivalent to “[0]”, since there is only
one instance of “ueberwachungssignal”.

Note that the ContractClass “strassensignal” is associated with two ClassConstraints (in
the diagram visible in the “constraints” section of the class). These LTL formulas restrict the
valid behaviour in addition to the contract formulation which is provided as a state machine. Tech-
nically, this syntax is redundant, since every state machine can be expressed equivalently by an LTL
formula which then can be combined with the ClassConstraint to a single LTL formula. However,
ClassConstraints allow to organise the contract in a more human readable way.

Example of a State Machine. Fig. 4.3 shows the state machine that describes the contract of class
“strassensignal” in the level crossing case study. The transitions are organised according
to the inputs “ZustandUeberwachungssignal[id ss]”, “Kommando”, “UmgebungKfz”,
“Gestoert”, and “GestoertTest”. The first two inputs originate from the system under test, the
last three originate from the environment model. The outputs “Zustand0”, and “Zustand1” are
generated. Owing to class constraints, the value of both outputs is identical at any point in time.

The numbers associated with the transitions correspond to the priorities: always the enabled tran-
sition with the lowest number is taken.

Note that the inputs do not only occur in guard conditions but also in constraints associated with
states. For example, state “UnInit” has to be left if input “UmgebungKfz” has a value different
from “StrasseTestOB”.

For a closer look at a complete example of a CDSL modeling formalism application in its current
state, the reader is referred to section 12.1.2, which will focus on a concrete CDSL model developed
within the context of our smoke detection protocol case study.
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Figure 4.3: The contract of ContractClass “strassensignal” is described by a deterministic state
machine. The numbers associated with transitions are priorities that resolve the non-determinism in
case of two or more enabled transitions.
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4.5 Rules for the CDSL→ GTL Transformation

Part of the VerSyKo tool chain is the transformation of model descriptions to the (textual) GTL syntax,
described in detail in chapter 5.

While transformations between formalisms in general can be complicated or even impossible,
here this operation is theoretically sound: the CDSL is constructed with care, such that the expressive
power does not exceed the expressiveness of GTL. The presence of an instance concept and behavioral
descriptions via automata in both formalisms make the transformation rather straightforward.

In the following we outline the transformation, grouped into structural elements, transition ele-
ments, and annotations.

Translation Principles CDSL to GTL (structure).

• Each state machine is translated to one GTL model, that is specified via an automaton.

• Hierarchical state machines are flattened; this is straightforward, since parallelism is not present
on lower-level state charts. Basic states of a state machine are translated to states of the automa-
ton, including all invariants (if present) inherited from the source state or (hierarchical) parent
states thereof.

• The instance concept is preserved, i.e., instances of state machines are translated to instances of
models.

Translation Principles CDSL to GTL (transitions).

• Transitions between state chart states are translated to transitions between the corresponding
(flat) automaton states; guard annotations are preserved.

• Transition actions are translated to invariants that are added to the corresponding automaton
target state.

• For states with more than one incoming transition, it may be necessary to split up the corre-
sponding automaton state into several states that share the same outgoing transitions.

Translation Principles CDSL to GTL (annotations).

• Entry/do actions of states are translated to invariants.

• Non-behavioral annotations, like verification goals, are translated literally.

In the smoke detection case study — which serves us as a guiding example — this transformation
has been performed manually (see section 12.1.3).

Ultimately, the transformation will be performed by a model parser, which operates on the XMI-
export of the UML model (see section 4.4).
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Chapter 5

Textual Contract Specification Language
GTL

In this section we describe the syntax and semantics of the specification language GTL (GALS trans-
lation language) we develop within VerSyKo to specify GALS systems. In GTL a GALS system is a
network of synchronous components. Recall that we speak about abstract GALS models (“network of
contracts”) and concrete GALS models (“network of implementations”). The GTL is used to specify
abstract GALS models.

We will first describe the syntax of the GTL in Sec. 5.1 and then present the syntax grammar in
Sec. 5.2. Subsequently, we explain the data types that can be used in GTL specifications in Sec. 5.3.
In Sec. 5.4 we give an informal description of the GTL semantics. Finally, we discuss restrictions of
the GTL language in Sec. 5.5.

5.1 Syntax

To specify an abstract GALS model in the GTL, four elements are required:

model declarations Each synchronous component used in the specification has to be declared using
a model declaration. A model declaration declares a class of components which can be instan-
tiated. The model declaration specifies what formalism is used to describe the component (e.g.
SCADE) as well as how to load the component specification (location of source files etc.). For
example, the following snippet declares a component “car” which is written in SCADE in the
file “car.scade” and its SCADE-node is named “ExampleCar”:

1 model [ s c a d e ] c a r ( ” c a r . s c a d e ” , ” ExampleCar ” ) ;

The parameter list given to the model declaration depends on the synchronous formalism used.
It is possible to have multiple models written in different formalisms.

Model declarations can also contain a body, in which contracts and other attributes can be
specified, for example

1 model [ s c a d e ] c a r ( ” c a r . s c a d e ” , ” ExampleCar ” ) {
2 c y c l e t ime 40ms ;
3 input i n t g e a r ;
4 output f l o a t speed ;
5 }
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A body can contain:

• The cycle-time in which the synchronous model is able to perform one calculation step,
e.g.:

1 c y c l e−t ime 40ms ;

• Declaration of variables. A variable can either be input, output or local. A component
reads from its input variables and writes to the output variables. Local variables are used
to store internal state information. As GTL is a typed language, each variable declaration
has to specify the type of the variable. For example, the following code declares x to be
an input variable of type “int”.

1 input i n t x ;

If the synchronous formalism supports extracting type information, neither input nor out-
put variables have to be declared.

• Initialization values for variables, which can be used to give variables a value before the
component performs a calculation step. The following assigns the variable x the initial-
ization value 4:

1 i n i t x 4 ;

The assigned value must be of the same type as the variable itself (see Section 5.3).

• Contracts which describe an abstraction of the component’s behavior. For example, the
following contract guarantees that the value of speed will always be less that 100:

1 c o n t r a c t always ( speed < 100) ;

Contracts can use any construct described in Section 5.1.1. Contracts can be declared to be
“guaranteed” which means that the correctness of the contract has already been established
by other means (e.g. testing):

1 guaranteed c o n t r a c t always ( speed < 100) ;

instances Declared components need to be instantiated in order to be used. This is similar to the
concept of classes and instances known from object-oriented programming. It allows the user
to reuse the same component without having to re-declare its contract every time. The following
code declares c1 and c2 to be instances of the component “car”:

1 i n s t a n c e c a r c1 ;
2 i n s t a n c e c a r c2 ;

connections A connection links an output variable of one component to an input variable of another
one. This means that if the component writes onto this variable, the other component will read
it in its next cycle. The following statement connects the variable speed from the component c1

with the variable current speed of the component cc:

1 connect c1 . speed cc . c u r r e n t s p e e d ;

It is required that the two connected variables are of the same type.
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verification goals To specify a verification goal which has to be proved or disproved by the GTL-
tool, the “verify”-construct is used. As with contracts, every construct from Section 5.1.1 may
be used. The following snippet encodes the statement that a push on the brake always results in
a speed reduction:

1 v e r i f y {
2 always c1 . b r a k e => e x i s t s x = c1 . speed :
3 f i n a l l y [50 ms ] ( c1 . speed < x ) ;
4 }

5.1.1 Expressions

Expressions are used to specify contracts as well as verification goals. Expressions are composed
from so called atomic expressions. An atomic expression is either a variable, a relation (“less-than”,
“greater-or-equal” etc.) between two arithmetic expressions or a constant.

An expression can have two possible forms:

Temporal formulas This provides the user with a LTL-like language to specify behavior. Within
contracts in a component, the usual step-based interpretation of LTL is used. So for example a
statement like

1 next x ;

means that x will be true in the next clock cycle of the synchronous component. On the global
level a GALS model performs a step whenever one of its components performs a step. This
makes the next connective somewhat hard to use. So on the global level a time-based interpre-
tation of temporal operators is useful. For example, the LTL operator “next” can be annotated
with a time constraint like

1 next [150ms ] x ;

which means that for the next 150ms, x will be true. Notice that within contracts, time an-
notations may optionally be used, in which case they refer to the cycle-time of components.
For instance, within the contract of a component with a cycle-time of 40ms, the above time
constraint specifies that x holds for the next 4 cycles (i.e. actually for 160ms). Other temporal
constructs are:

• The “until” operator states that a property holds at least until another property holds. If
it is annotated with a time constraint it means that the second property has to hold in that
time frame.

• “always” specifies that a property is always true. This corresponds to the LTL operator
“globally”(2).

• “finally” can be used to describe that a property will eventually hold. If it is annotated
with a time, the property has to hold at least once within that time frame.

It is possible to refer to values of variables from a certain point in the past by binding them to a
new variable:

1 e x i s t s x = p : next ( x and q ) ;
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q0 q1
x > 2/3 ≤ y < 5

x < 10/ x > 2/y < 5

Figure 5.1: State-machine example

This specifies that both p and the next value of q are true.

State machines Some behaviors are easier formulated as a state machine than as a formula. In those
cases one can declare a state machine as follows:

1 automaton {
2 i n i t s t a t e q0 {
3 x < 1 0 ;
4 t r a n s i t i o n q0 ;
5 t r a n s i t i o n [ y >= 3] q1 ;
6 }
7 s t a t e q1 {
8 x > 2 ;
9 y < 5 ;

10 t r a n s i t i o n q1 ;
11 }
12 }

If x is an input variable and y is an output variable, the state machine would declare a transition
system as in Figure 5.1.

State machines can also use local variables.

The body of an automaton contains states which can be declared as follows:

1 s t a t e r e c v {
2 . . .
3 }

This declares a new state “recv”. States can be made initial with the keyword “initial”. States
can contain atomic expressions or transitions. An atomic expression containing only input vari-
ables formulates a guard condition for the state, i. e., the state can only be entered if this guard
condition is true (e. g., x > 2 in q1 above, cf. Fig. 5.1 above). Atomic expressions contain-
ing output variables are constraints that determine possible values of these variables. Local
variables can occur in guard conditions, output constraints, and they can (deterministically) be
assigned new values.

A transition declares another state to be a possible successor to this one. Transitions may have
guard conditions which must be fulfilled before the transition can occur. The following code
declares a transition into the state “send” which can only occur if the variable x is less than 10.

1 t r a n s i t i o n [ x<10] send ;

Transitions may contain both atomic expressions on output variables and input variables. Again,
an atomic expression containing only input and local variables (and which is not an assignment
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of a local variable) is a transition guard. Atomic expressions containing outputs or which are
assignments of local variables determine the values of these variables.

5.2 Grammar

A GTL-specification file consists of a list of declarations:

〈gtl spec〉 ::= 〈declaration〉*
Each declaration can be either a component declaration, an instance declaration, a connection or a
verification goal:

〈declaration〉 ::= 〈model decl〉
| 〈instance decl〉
| 〈connect decl〉
| 〈verify decl〉

A component declaration consists of the name of the synchronous back end formalism (for now,
only SCADE), its name, a list of arguments and its contract. The arguments specify how to load the
synchronous model specification. For example in SCADE, it needs the filename in which the model
is specified and the name of the SCADE-node which implements the model.

〈model decl〉 ::= ‘model’ ‘[’ 〈id〉 ‘]’ 〈id〉 ‘(’ (〈string〉 (‘,’ 〈string〉)*)? ‘)’ 〈model contract〉
The model contract can either be empty or a list of contract bodies:

〈model contract〉 ::= ‘;’
| ‘{’ 〈contract body〉* ‘}’

A contract body is either a variable declaration, a contract formula, an initialization value for a variable
or an automaton declaration:

〈contract body〉 ::= 〈direction〉 〈type〉 〈id〉 ‘;’
| ‘guaranteed’? ‘contract’? 〈formula〉 ‘;’
| ‘init’ 〈id〉 〈value〉 ‘;’
| ‘cycle-time’ 〈time spec〉 ‘;’
| ‘automaton’ ‘{’ (〈state〉)* ‘}’

A variable can be an input, output or be local to the model:

〈direction〉 ::= ‘input’
| ‘output’
| ‘local’

GTL supports many common types:

〈type〉 ::= ‘int’
| ‘byte’
| ‘bool’
| ‘float’
| ‘enum’ ‘{’ 〈id〉 (‘,’ 〈id〉)* ‘}’
| 〈type〉 ‘ˆ’ 〈int〉
| ‘(’ 〈type〉 (‘,’ 〈type〉)* ‘)’
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Variable values match the available types:

〈value〉 ::= ‘-’? [‘0’-‘9’]+ (‘.’ [‘0’-‘9’]+)?
| ‘true’
| ‘false’
| ‘’’ 〈id〉
| ‘[’ (〈value〉 (‘,’ 〈value〉)*)? ‘]’
| ‘(’ (〈value〉 (‘,’ 〈value〉)*)? ‘)’

Variables can be qualified or unqualified names:

〈var〉 ::= 〈id〉 〈index〉
| 〈id〉 ‘.’ 〈id〉 〈index〉

〈index〉 ::= (‘[’ 〈int〉 ‘]’)*

Formulas are either atomic propositions (see below) or linear temporal logic formulas including exis-
tential quantifications:

〈formula〉 ::= 〈atom〉
| ‘not’ 〈formula〉
| 〈formula〉 ‘and’ 〈formula〉
| 〈formula〉 ‘or’ 〈formula〉
| 〈formula〉 ‘implies’ 〈formula〉
| ‘always’ 〈formula〉
| ‘next’ (‘[’ 〈time spec〉 ‘]’)? 〈formula〉
| ‘finally’ (‘[’ 〈time spec〉 ‘]’)? 〈formula〉
| 〈formula〉 ‘until’ (‘[’ 〈time spec〉 ‘]’)? 〈formula〉
| ‘exists’ 〈id〉 ‘=’ 〈var〉 ‘:’ 〈formula〉
| ‘(’ 〈formula〉 ‘)’

Atomic propositions can be variables, values or relations:

〈atom〉 ::= 〈var〉
| 〈value〉
| 〈expr〉 ‘<’ 〈expr〉
| 〈expr〉 ‘>’ 〈expr〉
| 〈expr〉 ‘<=’ 〈expr〉
| 〈expr〉 ‘>=’ 〈expr〉
| 〈expr〉 ‘=’ 〈expr〉
| 〈var〉 ‘in’ ‘{’ (〈value〉 (‘,’ 〈value〉)*)? ‘}’

Expressions can also be variables, values or arithmetic terms:

〈expr〉 ::= 〈var〉
| 〈value〉
| 〈expr〉 ‘+’ 〈expr〉
| 〈expr〉 ‘-’ 〈expr〉
| 〈expr〉 ‘*’ 〈expr〉
| 〈expr〉 ‘/’ 〈expr〉
| ‘(’ 〈expr〉 ‘)’
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States consist of state content. They can optionally be declared as initial states:

〈state〉 ::= ‘initial’? ‘state’ 〈id〉 ‘{’ (〈state content〉 ‘;’)* ‘}’

A state content is either a formula that has to hold in this state or a transition declaration into another
state, possibly annotated with a guard condition:

〈state content〉 ::= 〈formula〉
| ‘transition’ (‘[’ 〈formula〉 ‘]’)? 〈id〉

Instances are declared by specifying the model and the name of the instance. Optionally, they can
have additional contracts:

〈instance decl〉 ::= ‘instance’ 〈id〉 〈id〉 〈instance body〉

〈instance body〉 ::= ‘;’
| ‘{’ (〈formula〉 ‘;’)* ‘}’

Connections are specified by giving the source component and variable and target component and
variable:

〈connection decl〉 ::= ‘connection’ 〈id〉 ‘.’ 〈id〉 〈index〉 〈id〉 ‘.’ 〈id〉 〈index〉 ‘;’

Verification goals are simply formulas:

〈verify decl〉 ::= ‘verify’ ‘{’ (〈formula〉 ‘;’)* ‘}’

Time specifications are a number followed by a time-unit, which can also be given in cycle counts:

〈time spec〉 ::= 〈int〉 〈time unit〉

〈time unit〉 ::= ‘s’
| ‘ms’
| ‘us’
| ‘cy’

5.3 Data types

The following data types are supported:

int 64bit unsigned integer. Range from −263 to (263 − 1).

byte 8bit unsigned integer. Range from −128 to 127.

float IEEE 754 double precision (64bit) floating point numbers.

enum Simple enumeration types which consist of a list of possible values. Each value is distinct
from every other value. Enumeration types are equal if they have exactly the same values. For
example, to declare an input variable “color” which can have the three values “red”, “green” or
“blue”, one writes:

1 input enum { red , green , b l u e } c o l o r ;
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To specify that the variable has the value “blue” one can use an enumeration constant by pre-
fixing an allowed value with a quote:

1 c o l o r = ’ b l u e ;

array Arrays are composite types which replicate a given type a given number of times. To declare
an array, one uses the power operator “ˆ” for types:

1 output i n t ˆ3 xs ;

This would declare xs to be an array of three integer values. Array values are constructed as
follows:

1 xs = [ 3 , 5 , 6 ] ;

Arrays can be indexed using the familiar C-syntax:

1 xs [ 1 ] > 4 ;

This would specify that the second element in the array xs must be greater than 4. Note that
this syntax is also available in connections.

tuple Tuples are similar to arrays, but while arrays are restricted to replicate a given data type, tuples
can be composed from any number of data types. A tuple type is declared as such:

1 l o c a l ( i n t , boo l ) x ;

This would declare x to be a tuple consisting of an integer component and a Boolean component.

5.4 Semantics

In this document we will not give a formal semantics of GTL but rather describe the semantics in-
formally. For a fragment of GTL (without automata, local variables and timed constraints) a formal
semantics is described in [51]. At the moment we leave the formal semantics of the complete language
as described here for future work.

Definition 1. We denote by Id the set of available identifiers.

In a practical implementation Id will usually be the set of all strings, minus reserved grammar
keywords.

5.4.1 Type system

Definition 2. Let Λ be the set of all types as defined in the grammar (see Section 5.3). We define the
function JKT , mapping types to their domain1 as follows:

JKT : Λ→ Set

1The domain for floats is not really reals but IEEE 754 64bit doubles.
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JintKT = {−263, . . . , 263 − 1}
JboolKT = B
JbyteKT = {−128, . . . , 127}
JfloatKT = R

Jenum{id1, . . . , idn}KT = {id1, . . . , idn}
JtnKT = (JtKT )n

J(t1, . . . , tn)K = Jt1KT × · · · × JtnKT

To define the type system we will specify which type bindings are correct for a given program.

Definition 3. Let Γ be a type binding, i. e., a mapping from variables of a GTL-specification to their
corresponding type and their “function” which can be input, output or local variable. The variables
are encoded by strings of the form c.v where v is the name of the variable and c the name of its
component. For local variables, the component name is omitted. For undefined variables, Γ returns
⊥. Thus Γ has the signature

Γ : Id × Id ∪ Id → (Λ ∪ {⊥})× {input , output , local}

We are now ready to define the property of being well-typed for a given GTL specification. Below
we define the typing relation ` by structural induction; it has the signature

`: (Id × Id ∪ Id → (Λ ∪ {⊥})× {input , output , local})× (Λ ∪ {>})× LGTL,

where LGTL is the set of GTL specifications generated by the grammar from Section 5.2.

Notation 4. Instead of (Γ, t, α) ∈ `, we write

Γ ` α : t.

If a language construct is un-typed, i. e., it has the type >, we omit this type and simply write

Γ ` α.

Definition 5. A textual model α is well-typed if there exists a valid type-mapping Γ for it and its type
is >.

A GTL-model is well-typed if each declaration in it is well-typed and the type mapping does only
contain qualified variables:

all
Γ ` d1 . . . Γ ` dn ¬∃v ∈ Id : Γ(v) 6= ⊥

Γ ` d1 . . . dn

A component declaration is well-typed if all its body elements are valid for the binding Γ′ which
consists of all variables which are local to the declared component:

model
Γ′ ` c1 . . . Γ′ ` cn

Γ ` model[β] c(args){c1; . . . ;cn}

Here, Γ′ is the function which makes all variables from Γ local to the component c:

Γ′(x) =

{
Γ(c, x) x ∈ Id
⊥ x ∈ Id × Id
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A type declaration must conform to the type given in Γ:

decl
v ∈ Id Γ(v) = (t, d)

Γ ` d t v
An initialization value must be of the corresponding type:

init
v ∈ Id Γ(v) = (t, ) i ∈ JtKT

Γ ` init v i

A contract formula must be of type bool and be valid according to the type binding Γ:

contract Γ ` π : bool
Γ ` contract π

An instance of a component must be compatible to the type-bindings of the component:

instance
c ∈ Id i ∈ Id ∀v ∈ Id : Γ(c, v) = r ⇔ Γ(i, v) = r

Γ ` instance c i

A connection may only be established between variables of the same type:

connection

Γ(i1, v1) = ( , output) Γ ` i1.v1 c1 : t
Γ(i2, v2) = ( , input) Γ ` i2.v2 c2 : t

Γ ` connect i1.v1 c1 i2.v2 c2

Verification goals must contain well-typed Boolean expressions:

verify
Γ ` v1 : bool . . . Γ ` vn : bool

Γ ` verify{v1; . . . ;vn}

A variable simply has its associated type and can be either qualified (in a verification goal) or unqual-
ified (in a contract):

var1
c ∈ Id v ∈ Id Γ(c, v) = (t, )

Γ ` c.v : t
var2

v ∈ Id Γ(v) = (t, )

Γ ` v : t

Existential quantifier create a new variable of the same type as the bound variable:

exists
x ∈ Id v ∈ Id × Id ∪ Id Γ(v) = (t, ) Γ ∪ {(x, t)} ` e : t′

Γ ` exists x = v: e : t′

Constants follow:

const
t ∈ Λ l ∈ JtKT

Γ ` l : t

Expressions may be indexed:

index
i ∈ N Γ ` e : (t1, . . . , ti, . . . , tn)

Γ ` e[i] : ti

Logic operators have the usual type semantics:

not Γ ` l : bool
Γ ` not l : bool

and Γ ` l : bool Γ ` r : bool
Γ ` l and r : bool

or Γ ` l : bool Γ ` r : bool
Γ ` l or r : bool

implies Γ ` l : bool Γ ` r : bool
Γ ` l implies r : bool
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Temporal operators work in a similar fashion (note that time constraints are not handled here because
they do not change the types):

next Γ ` l : bool
Γ ` next l : bool

always Γ ` l : bool
Γ ` always l : bool

finally Γ ` l : bool
Γ ` finally l : bool

until Γ ` l : bool Γ ` r : bool
Γ ` l until r : bool

Relations work only on equal types:

equal Γ ` l : t Γ ` r : t
Γ ` l = r : bool

nequal Γ ` l : t Γ ` r : t
Γ ` l != r : bool

lesser Γ ` l : int Γ ` r : int
Γ ` l < r : bool

greater Γ ` l : int Γ ` r : int
Γ ` l > r : bool

Arithmetic operators only work on integers:

plus Γ ` l : int Γ ` r : int
Γ ` l + r : int

minus Γ ` l : int Γ ` r : int
Γ ` l - r : int

mult Γ ` l : int Γ ` r : int
Γ ` l * r : int

div Γ ` l : int Γ ` r : int
Γ ` l / r : int

State machines are also valid Boolean expressions, if all states are valid:

automaton
Γ ` s1 . . . Γ ` sn

Γ ` automaton {s1; . . . ;sn} : bool

A state is valid if all guards are valid and each transition label is well-typed:

state
Γ ` c1 : bool . . . Γ ` cn : bool

Γ ` state n {c1; . . . ;cn}

Transitions must have well typed guards (or no guard at all):

transition Γ ` e : bool
Γ ` transition[e] n : bool

5.4.2 Semantics of SCADE-components

Being described in a synchronous language, every SCADE-component in a GTL-specification can be
written as a deterministic mealy machine. The set of states is the assignment of values to all flows in
the SCADE model. The type of the input for the mealy machine is a vector of all input variable types.
For example if the component has two int-inputs and one bool-input then the input type for the mealy
machine is JintKT × JintKT × JboolKT . The same construction applies for the vector of output types.
The components have a finite internal state space that is defined by the synchronous formalism.

In every step that a component performs, values are read from the input variables and depending
on them and the internal state, output variables are assigned to new values and a new internal state is
entered.
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5.4.3 Semantics of GTL-components

If contracts are used to abstract the concrete component implementation, the components become non-
deterministic mealy machines, because the contracts specify more behavior of the components. Every
contract is transformed into a Mealy automaton: for a contract given by a LTL-formula, we adapt
the translation algorithm from [42], and for a contract that is already given by a state machine the
transformation into an automaton is straightforward; see Section 7.1 for some details. If a component
has more than one contract its semantics is the automaton obtained by forming the product automaton
of the automata obtained from the contracts.

The synchronous behavior of this automaton is obtained as follows: in every synchronous cycle
the automaton performs one step. The length of the cycles of a component is specified by the cycle
time statement and is used when giving the semantics of the composition of the components of a
GTL-specification as an abstract GALS model in the next section.

Because the verification targets do not (yet) restrict the execution of contracts to the runs where
some Büchi acceptance condition is met, the final states of the resulting automata can be ignored and
the automaton can be treated as a non-deterministic Mealy machine.

5.4.4 Semantics of GALS models

A GTL-model is interpreted as a network of synchronous mealy machines (either deterministic or
non-deterministic, depending on the usage of contracts to abstract components). The connections
between components can be interpreted in different ways:

• The simplest one is a shared-memory abstraction that views connections as being loss-less and
instantaneous. This can be realized by creating a variable for each connection that is being
written by one component and read by another. Even though this is easy to implement, it has
the drawback that it might not be very realistic for some applications and it can result in values
being overwritten before they can be consumed by the reading process.

• More complex interpretations could consider factors like message loss or message delay. With
message loss, the user could specify that a connection is lossy which would result in simulations
where messages are non-deterministically dropped from the connection. To prevent the loss of
all messages, certain fairness conditions might be interesting to consider. Message delay would
either result in a constant delay that is added to every message transmission (deterministic delay)
or a user specified “delay-range” in which a message might be delivered.

There are also several options available to interpret the execution strategy for the components:

• By allowing full asynchronicity, each process is allowed to do a step at every time. This inter-
pretation is very easy to implement, but it is also very unrealistic, as it allows one component to
“starve” every other component by not allowing them to make a step.

• Fairness constraints can be used to prevent a component from starving. While this prevents
the worst execution-cases from being considered for the verification, it still might not be good
enough to achieve realistic verification results, as many unrealistic cases are still being consid-
ered (e.g. one process doing 1000 cycles while another one only performs one).

• A scheduling of the components’ execution may keep track of the execution time for each
component and only allow a component to make a step when certain conditions are fulfilled. For
example only the component with the least amount of execution time can be allowed to execute
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in each step effectively disabling asynchronicity. Alternatively, components significantly ahead
of all other components may be slowed down by denying them execution steps.

For the prototypical model transformations described in the next section we take a transforma-
tional semantics that (a) uses shared memory abstraction and (b) implements scheduling that lets
synchronous components progress synchronously with a global clock. In this scheduling we assume
that there is a global dense time with which all components are synchronized. This is the reasonable
realistic assumption that cycles of all real components refer to the same global time (i. e., the current
time is the same for all components).2 The scheduling then lets components make steps according to
their cycle time. But globally the components are running asynchronously. In this scheduling we also
assume (as a simplification) that all components start at the same time. A more complicated variant
lets components start non-deterministically within a certain specified time period.

5.5 Restrictions of GTL specifications

In this section we list a number of restrictions of GTL specifications. Some of them are dictated
by the semantics that we have described and some of them are restrictions imposed by the model
transformations described in the next section. These latter restrictions might be lifted in the future as
implementations of the model transformations are improved.

Only one output variable per relation in contracts. For contracts of a component that are specified
by an LTL formula, every atomic expression containing a relation (e. g. <,= etc.) has to contain at
most one output variable.3 The reason for this is that when two or more output variables are involved
it is not obvious how to define their range of values. For example, given two output variables x and y
with possible set of values Vx and Vy, what is their set of variables after we specify that x < y.

This restriction applies only to the PROMELA and UPPAAL targets. The SMT target can handle
any kind of contract expression.

Verification goals must not refer to cycle counts. Indeed, on the global level synchronous cycles
have no meaning. Verification goals should use temporal connectives with a time constraint referring
to the global dense time. They can also use ordinary temporal connectives which refer to the steps of
the global GALS model, which makes a step whenever one of its components is making a step.

Local variables can only be assigned deterministically. The reason for this is that local variables
can be read and written. So an expression like x < y, where x is a local variable and y an input
variable is ambiguous: this could be checking whether y is greater then the current value of x or it
could be an (non-deterministic) assignment setting x to any value less than y. This restriction can be
lifted if one syntactically distinguishes read and write access to local variables.

LTL contracts may only use bounded temporal connectives. This restriction is imposed by the
SCADE DV. Since synchronous observers are defined using the SCADE language constructs. So since
SCADE does not have any unbounded temporal connectives LTL formulas containing “finally” or
“until” cannot be translated to SCADE. This restriction may be lifted when a different verification
tools than SCADE DV is used for local verification. This will be investigated in WP 4 of VerSyKo.

2An instance of this is are the clocks in German railway stations that always show the same time.
3Currently, this one output variable even has to be alone on one side of the relation, e. g. o > i+ 42 but not o− i > 42.
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Chapter 7

Model Transformations and
GALS-Verification

GTL models can be transformed and verified using a number of target languages and mechanisms. The
simplest way to verify a GTL model is by including generated code from the synchronous components
into a PROMELA model. This approach is described in Section 7.2.1. Abstraction by contract is a
technique which can be used by translating the GTL model either to PROMELA (Section 7.2.2), to
UPPAAL (Section 7.3) or an SMT instance (Section 7.6). The correctness of the specified contracts
can be verified using the SCADE synchronous observer, as being described in Section 7.4. Strategies
for implementing schedulers for the components are being discussed in Section 7.5.

7.1 Transformation of component contracts to automata

This transformation step is shared by every global verification technique. Because the contracts are
mixtures of LTL-formulas and state machines, a unified representation is needed for the contracts
before translating them into the target languages. Büchi automata [26] are a good way to achieve this,
because there are standard algorithms for translating LTL formulas into Büchi automata [43, 42]. In
addition, UPPAAL directly supports an automata representation as an input, and the translation of
automata into PROMELA or SMT is straightforward.

Even though the expression language used for GTL contracts is more complex than pure LTL, note
that all temporal operators can be translated into LTL-formulas since every time specification can be
translated into a step-number by dividing with the cycle time. So if the cycle time of a component is
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denoted by c, it follows that:

next[t] ϕ = ϕ ∧©(ϕ ∧ . . . )︸ ︷︷ ︸
b tcc

after[t] ϕ =©(© . . . (©︸ ︷︷ ︸
b tcc

ϕ))

finally[t] ϕ = ϕ ∨ (©(ϕ ∨ . . . ))︸ ︷︷ ︸
b tcc

ϕ until[t] ψ = ψ ∨ (ϕ ∧©(ψ ∨ (ϕ ∧ . . . )))︸ ︷︷ ︸
b tcc

Translation of LTL contracts. We adopt the algorithm from [42] that translates a given LTL for-
mula into an equivalent Büchi automaton. Recall that a Büchi automaton is a tuple (Q,Σ, δ, q0, F )
with the following components:

• Q is the set of states of the automaton. It is usually represented by integer numbers in a practical
implementation.

• Σ is the set of so called “atomic” expressions, that is expressions which do not contain logical
connectors, but are only comprised of relations and arithmetic expressions. Using the grammar
defined in Section 5.2, elements of Σ are represented by the non-terminal symbol <atom>.

• δ : Q × 2Σ → 2Q is the transition relation for the automaton. It takes a state and the set of
currently valid atoms and produces a set of successor states.

• q0 ∈ Q is the initial state, in which the execution of a Büchi automaton starts.

• F ⊆ Q is the set of final states, meaning states that have to be entered infinitely often for an
accepting run.

To actually simulate a contract-abstraction in a target language, it is necessary to generate the set
of variable mappings which make a given transition condition true. This is done by splitting the set of
atoms Σ that must hold into two categories:

(1) ΣI are atoms that perform checks on the input variables or on the local variables. These atoms
must not contain any output variables or be an assignment to a local variable (cf. Sec. 5.5). Ex-
ample: i < 10 for the input variable i.

(2) ΣO are atoms which determine the values of output variables or are assignments of local variables.
These atoms will either be some relation containing at least one output variable or an assignment
to a local variable. Notice that the current restrictions of GTL (see Section 5.5) enforce that there
is exactly one output variable. Example

o > i+ 10,

where i is an input variable and o the output variable.
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This means that Σ can be written as Σ = ΣI ∪ ΣO. Our translated automaton will be a non-
deterministic Mealy automaton with a Büchi acceptance condition, i. e., a tuple (Q,ΣI ,ΣO, δ

′, q0, F ),
where the transition function has the following type:

δ′ : Q× 2ΣI → 2Q×2ΣO .

We call this type of automaton a component automaton. A transition (q,X)→ (q, Y ) in a component
automaton means that whenever in the state q the atoms in the set X ⊆ ΣI are true the automaton
proceeds to state q′ and the atoms in Y ⊆ ΣO become true. The subset Y defines a system of
(in)equations, which can be solved for the output variables. Each solution provides possible values of
the output variables. In the target language one has to generate statements that non-deterministically
assign each of these possible solutions to an output variable. In PROMELA, this can be realized by
constructing a loop. For example, the following code assigns all values from 0 to 10 to the variable o:

1 o = 0 ;
2 do : : o < 1 0 ;
3 o = o + 1
4 : : break ;
5 od

Translation of state machine contracts. Contracts given by a state machine in GTL are easily
translated into component automata. The translation essentially only needs to transform Moore states,
i. e., states containing atoms, to Mealy states. This transformation is straightforward.

Dealing with several contracts. Whenever the behavior of a component is specified by several
contracts, one translates each of the contracts into an automaton and then forms a product automaton.

7.2 Transformation of Components to PROMELA processes

The transformation to PROMELA can be done in two ways:

(1) By translating the (concrete) SCADE models of the synchronous components into C and integrat-
ing them into PROMELA. This method is described in Section 7.2.1.

(2) By translating the component contracts into native PROMELA-code, described in Section 7.2.2.

7.2.1 Native Integration

A GTL-specification can be translated into PROMELA by translating every synchronous component
into C. Note that this process is dependent on the synchronous formalism used to describe the com-
ponent.

For example, SCADE-components are translated using the SCADE code-generator which is pro-
vided with the SCADE-suite. The translation process has to make sure that no naming-conflicts arise
and is described in detail in [57]. The code-generator generates two data-structures for each com-
ponent in the model. The first one is a structure of all input variables in the component and can be
used to provide the component with the input data for each step. It has the name of the component,
prefixed by “inC ”. The second data-structure contains the internal state of the component as well
as its output (because the output can potentially be used as state in SCADE). This data-structure is
prefixed by “outC ”. The code-generator also provides two generated functions for each component:
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• A function to set the internal data-structure to its initialization-values, which has the name of
the component suffixed by “ reset”.

• A function to perform a calculation step of the component. This function takes both the input
data-structure and the state data-structure and manipulates the internal state of the component.
The name of the function is the name of the component.

The integration of the synchronous components in PROMELA is now done as follows: For each
component, an instance of the state data-structure is added to the global state vector. This can be done
by using the “c state” construct in PROMELA. For a component named n, this can be done by using

1 c s t a t e ” outC n n s t a t e ” ” G lo ba l ”

The state vector now has a variable named “n state”. The keyword “Global” declares the variable to
be accessible from every process in the system (this is necessary so that other components can read
the output).

The input data structure has no influence on the state of the model and can thus be declared to be
outside of it. This is done by using the “c decl” construct as follows:

1 c dec l {
2 inC n n i npu t ;
3 }

This creates a variable “n input” which can be used to transfer inputs to the component.
At the start of the verification, the reset-function for each component has to be called, which can

be done in the PROMELA “init” process. This process then proceeds to instantiate every component
process. For a system of two components, named n1 and n2 this would generate the following code:

1 i n i t {
2 c code {
3 n1 r e s e t (&now .n1 s t a t e ) ;
4 n2 r e s e t (&now .n2 s t a t e ) ;
5 }
6 atomic {
7 run n1 ( ) ;
8 run n2 ( ) ;
9 }

10 }

In each step of a component, the inputs of the component are filled with the current outputs of the
corresponding connected components. After this is done, the C step function has to be called.

Even though this translation process is straightforward, it has the problem that the outputs of each
component are automatically contained in the state vector, even if they are not used by the component
to determine its next step. This can result in a heavier memory consumption than actually required.

7.2.2 Contract abstraction

Component contracts are translated to PROMELA by translating the contract into a component au-
tomaton as described in Section 7.1. The resulting automaton is then transformed into a PROMELA

process as follows:
Each state is translated into a labeled statement with the label corresponding to an element of Q.

The statement is an “if”-construct that checks the input variables according to the function δ′. In each
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q0 q1

i < 10/o = >

i ≥ 10/o = ⊥

/o = >

Figure 7.1: Example Büchi automaton

branch of the construct, the output variables are non-deterministically assigned and the new state is
entered with a “goto”-statement. Care must be taken to insure that the initialization state q0 is the first
state generated so that the execution of the process starts in it.

As an example, consider the component automaton

({q0, q1}, δ, {i < 10, i ≥ 10}, {o = >, o = ⊥}, q0, {q1})

with δ as displayed in Figure 7.1.
This automaton would be transformed into the following PROMELA process:

1 proctype component ( ) {
2 q0 : atomic {
3 i f : : i < 1 0 ;
4 o = 1 ;
5 goto q0 ;
6 : : i >= 1 0 ;
7 o = 0 ;
8 goto q1 ;
9 f i

10 }
11 a c c e p t 0 : q1 : atomic {
12 i f : : o = 1 ;
13 goto q1 ;
14 f i
15 }
16 }

Note the use of the “atomic” construct to prevent SPIN from introducing unnecessary mid-steps.
The Büchi-acceptance condition is enforced by using acceptance labels in the automaton (i.e. label
“accept0”).

7.2.3 Verification goals

Verification goals that are simply LTL formulas are automatically translated into PROMELA and can
the be tested using the latest version of SPIN. Recall again, that this feature of SPIN cannot be
used to generate the contract automata, because it generates an automaton which checks if the system
conforms to the formula, not a process which generates the specified behavior.

Timed LTL formulas in verification goals semantically only make sense when components syn-
chronize their execution with a global dense time as described in Sec. 7.5.4. In this case a timed LTL
formula is translated by introducing clocks into the system. For each timed LTL subformula, a fresh
clock is introduced which is used to check the time constraint of the formula. Clocks are numerical
values c which decrease as time progresses. Each time a synchronous component (or rather its trans-
lated PROMELA process) makes a computation step, the timer c is decremented by the time that has
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passed since the last step was performed by some (possibly different) component. A clock c can be
set to a specific time t with the expression c := t. A clock’s expiration status can be checked by using
the clock name like a boolean expression. The expression is true if the clock is not yet expired. A
timed until construct x until[t] y can now be translated, using the fresh clock c, into

(c := t) ∧ ((x ∧ c) until y)

A timed next construct next[t] x is similarly translated to

(c := t) ∧ (x until¬c)

Derived constructs like finally are easily derived by the following equality:

finally[t] x ≡ > until[t] x

7.3 Transformation of Components to UPPAAL timed automata

Translating the resulting Büchi automaton from Section 7.1 to UPPAAL is easy, because UPPAAL
already uses a state-based modeling language with transition guards. Notice that in UPPAAL the
query language, in which verification goals are written, is somewhat restrictive as it provides only a
fragment of timed CTL [8]. So some LTL formulas (e. g. aU(bUc)) express properties that cannot be
expressed in the UPPAAL query language.

7.4 Translation of Component Contracts to Synchronous Observers

Synchronous observers are used in SCADE to verify a component (called “node” in SCADE). The
synchronous observer watches the output (or part of it) of a component and produces a Boolean
output which indicates whether or not the output is correct. The design verifier can then be used to
verify that the produced variable is always true, no matter what inputs are supplied, which can then
be used to deduce that the node’s behavior is indeed correct.

The generated component automaton is translated into a SCADE state machine [10]. This state
machine receives both the input and the output of the component and decides whether or not they
conform to the behavior specified by the contract.

For example, the following observer node is generated for the expression “2outp < 10”:

1 node T e s t n o d e ( ou tp : i n t ) r e t u r n s ( t e s t r e s u l t : bool )
2 l e t
3 au tomaton
4 i n i t i a l s t a t e i n i t
5 u n l e s s
6 i f ou tp < 10 r e s t a r t i n i t ;
7 i f t rue r e s t a r t f a i l ;
8 l e t
9 t e s t r e s u l t = t rue ;

10 t e l
11 s t a t e f a i l
12 l e t
13 t e s t r e s u l t = f a l s e ;
14 t e l
15 r e t u r n s . . ;
16 t e l
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Formally, a contract φ = φ1 ∧ · · · ∧ φn composed of n contract formulas is translated by translating
each sub-formula φi into a SCADE automaton ai. The generated node has both the vector i of input
variables as well as the vector o of output variables of the component as its input. Local variables of
the contract are translated into local variables l of the generated node.

Each automaton has a boolean variable “test result i” which indicates whether the current prefix
path of input/output pairs still matches the behaviour described by the component. The result of the
generated test-node is the conjugation of these variables.

1 node T e s t n o d e ( i ,o ) r e t u r n s ( t e s t r e s u l t : bool )
2 v a r
3 t e s t r e s u l t 0 : bool ;
4 . . .
5 t e s t r e s u l t n : bool ;
6 l
7 l e t
8 t e s t r e s u l t = t e s t r e s u l t 0 and . . . and t e s t r e s u l t n ;
9 a0

10 . . .
11 an
12 t e l

The translation process of the sub-formula φi into the SCADE automaton ai is done by first generating
a buchi automaton a′i from the sub-formula. This step has two different cases:

1. φi is an automaton. Because automatons in the GTL are already buchi automaton, we can
simply use the formula as the buchi automaton (a′i = φi).

2. φi is a LTL formula. In this case the algorithm of Gastin and Oddoux [42] is used to create the
buchi automaton a′i.

Now the resulting buchi automaton a′i is transformed by first checking if every state of it is final. This
has to be done, because SCADE has no means to formulate liveness properties 1. If all states are
indeed final, the generated buchi automaton is determinized using well known algorithms [87] 2. Now
the variable “test result i”, which indicates whether the current prefix path is valid, is assigned to be
true in every state. A single new state is added to the automaton in which the variable “test result i”
is false. A transition from every state is added to this new state with the lowest possible priority. This
means that a transition into this failure state is only taken if there is no other transition available, which
corresponds to not accepting the prefix path in the original buchi automaton.

7.5 Asynchronous Execution of processes

For the asynchronous execution of the abstract GALS model given by a GTL specification a scheduler
has to be generated. In order to be able to generate different scheduling strategies our transformation
generates a cycle counter for each translated component. The scheduling strategy should not depend
on the absolute number of steps of each component but rather the relative difference between cycle
numbers. This has the nice property that the cycle count can be normalized such that at least one

1It would be theoretically possible to use the “Liveness Checking as Safety Checking”-approach[22], but this would
require an extensive analyzation and rewriting of the SCADE component. Also the paper suggests a 3-4 time increase in
both verification time and required memory.

2Because every state in the generated automaton is final, we can also use a simpler powerset-based determinization
algorithm.
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cycle counter is zero after normalization. This reduces the state space as it makes cycles possible. A
scheduling strategy can now be described as a function which takes a cycle counter for each process
and decides if a given component may execute a cycle or not.

In the following subsections, a few possible scheduling strategies are being discussed.

7.5.1 Full asynchronicity

This scheduling strategy ignores the cycle counter and allows every component to execute a step
every time. This is easy to implement (it doesn’t even need the cycle counters to begin with) and
if any property is proven to hold using this scheduling, it holds for any other. However, verification
using this scheduling may produce errors that cannot occur in the real world, as it takes into account
“unfair” runs in which one or more components make no step at all, while the others do.

7.5.2 Synchronicity with non-determinism

In this scheduling only the process with the lowest cycle count is allowed to proceed. This means
that the cycle count for a process differs by at most one cycle from every other cycle counter. It is
equivalent to a round robin scheduler.

7.5.3 Bounded asynchronicity

In this scheduling, components are allowed to have a certain execution time difference. If a process is
farther away from the least executed process than a certain limit, it is no longer allowed to execute.

7.5.4 Synchronicity w.r.t. global dense time

In this, scheduling, components synchronize with a global dense time (see Section 5.4.4). The
scheduling lets components make steps according to their cycle time. Here, in lieu of a cycle counter,
for each component i, 1 ≤ i ≤ n, an integer variable ti is created, which holds the number of
time units, the component has been executing. After a step of process j, the following updates are
performed:

t′j = tj + cj

where cj is the cycle time of component j. For all i the following update is performed:

t′i = ti −min{tk | k ∈ {0, . . . , n}}

This ensures that always at least one counter is zero, and process i can make a step whenever ti has
value 0.

7.6 Transformation to an SMT instance

In every unrollment step i of the translation, each variable (input, output, local and automaton) v
of component c has a representation as an SMT variable. This SMT variable is given by ϕ(c, v, i).
The state vector s(c, i) of a component c at step i is the collection of all variables ϕ(c, v, i) of the
component. The contract of every component is translated into two predicates:

1. A predicate which determines the initial state of the component called Ic. Given a state s(c, i)
of the component, Ic(s(c, i)) states that it is an initial state of the component.
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2. Another predicate which encodes the transition relation of the component, i.e. given a state
of the component how the state in the next step looks like. This predicate is called Tc and
Tc(s(c, i), s(c, i+ 1)) states that s(c, i+ 1) is a successor state of s(c, i).

For each connection statement “connect c1.v1 c2.v2;” in the GTL specification, in every step i, the
following assertion is created:

ϕ(c2, v2, i+ 1) = ϕ(c1, v1, i)

This assertion states that the next input of component c2 is determined by the current output of com-
ponent c1.

A scheduling provides the following things:

1. A vector d(i) of SMT-variables for each unrollment step i which stores the current scheduling
information.

2. A predicate α(d(i), c) which states whether the component c may perform a calculation step at
the current scheduling state d(i).

3. Another predicate β(d(i), d(i+1), c) which schedules a step of the component c in the transition
from state d(i) to d(i+ 1).

4. Also a predicate β0(d(0)) which specifies the initial scheduling information.

We use h(i, c) as the predicate which states that component c performs a step at i while all other
components remain the same:

h(i, c) = Tc(s(c, i), s(c, i+ 1)) ∧
∧{

s(c′, i) = s(c′, i+ 1) | c′ ∈ C, c 6= c′
}
∧ β(d(i), d(i+ 1), c)

The predicate T (i) which specifies a step of the complete system can now be described:

T (i) =
∨
{α(d(i), c) ∧ h(i, c) | c ∈ C}

The initial state of the system is a conjunction of the initialization of each component and the initial
scheduling data:

I =
∧
{Ic(s(c, 0)) | c ∈ C} ∧ β0(d(0))

A path of length k can thus be encoded as:

I ∧ T (0) ∧ T (1) ∧ · · · ∧ T (k)

For notational ease, we introduce si as a vector of all variables in step i:

si = {s(c, i) | c ∈ C} ∪ {d(i)}

7.6.1 Verification goal encoding

The encoding of the LTL property to be verified is done by using the bounded LTL encoding 3 pre-
sented in [23]. The encoding assumes that the formula f to be verified is in positive normal form
(negations only appear in front of atoms). The encoding is incremental which means that if the SMT
solver supports the redaction of asserted formulas, we can re-use results obtained by checking for
error-paths of length n for the checking of paths of length n + 1. This means that asserted formulas
for this encoding are split into three categories:

3The encoding presented in the paper uses an extension to classical LTL which allows formulas to speak about past
events. This extension is called PLTL (“past LTL”).
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Base case assertions have to be made once before the first path is checked. They are valid for all
paths.

k-invariant assertions are asserted for every step of the path, but they stay valid for every path.

k-variant assertions are only valid for paths of length k and have to be redacted if longer paths are
considered.

As LTL can encode liveness properties, the encoding must be able to consider infinite paths. In the
context of LTL verification, it is sufficient to assume that infinite paths are paths which form a loop at
some point. To be able to distinguish between finite paths and paths with a loop, we introduce a few
new variables:

• li encodes whether or not a loop starts at step i (meaning that the last state is equal to the i-th
state).

• InLoopi specifies if the state i is part of the loop or not.

• LoopExists is used to determine if a loop exists or if the path is finite.

• sE is a proxy variable which is always equal to the last state in the path.

The assertions for these variables are as follows:

Base l0 ⇔ ⊥
InLoop0 ⇔ ⊥

k-invariant li ⇒ (si−1 = sE)
1 ≤ i ≤ k InLoopi ⇔ InLoopi−1 ∨ li

InLoopi−1 ⇒ ¬li
k-variant lk+1 ⇔ ⊥

sE = sk
LoopExists ⇔ InLoopk

For each sub-formula f ′ of f , two more proxy variables are created:

• |[f ′]|L is the value of f ′ at the point where the loop starts (or false if there is no loop).

• |[f ′]|E is the value of f ′ at the last step of the path.

They are defined by the following assertions:

Base ¬LoopExists ⇒ (|[f ′]|L ⇔ ⊥)

k-invariant, 1 ≤ i ≤ k li ⇒ (|[f ′]|L ⇔ |[f ′]|i)
k-variant |[f ′]|E ⇔ |[f ′]|k

|[f ′]|k+1 ⇔ |[f ′]|L

For sub-formulas which contain the “finally”-operator F or the “globally”-operator G, a new
encoding is introduced:

• 〈〈Fg〉〉i states that g happened at least once in the loop at state i.

• 〈〈Gg〉〉i states that g happened at all states of the loop up to state i.
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The assertions for these variables enforce this:

f ′

Base Fg 〈〈Fg〉〉0 ⇔ ⊥
Gg 〈〈Gg〉〉0 ⇔ >

k-invariant Fg 〈〈Fg〉〉i ⇔ 〈〈Fg〉〉i−1 ∨ (InLoopi ∧ |[g]|i)
1 ≤ i ≤ k Gg 〈〈Gg〉〉i ⇔ 〈〈Gg〉〉i−1 ∧ (¬InLoopi ∨ |[g]|i)
k-variant Fg 〈〈Fg〉〉E ⇔ 〈〈Fg〉〉k

Gg 〈〈Gg〉〉E ⇔ 〈〈Gg〉〉k

With these auxiliary variables in place, we can give the encoding for |[f ′]|i which encodes the
value of a sub-formula f ′ of f at position i in the path:

f ′

Base Fg LoopExists ⇒ (|[Fg]|E ⇒ 〈〈Fg〉〉E)
Gg LoopExists ⇒ (|[Gg]|E ⇐ 〈〈Gg〉〉E)
g1Ug2 LoopExists ⇒ (|[g1Ug2]|E ⇒ 〈〈Fg2〉〉E)
g1Rg2 LoopExists ⇒ (|[g1Rg2]|E ⇐ 〈〈Gg2〉〉E)

k-invariant c.p |[c.p]|i ⇔ ϕ(c, p, i)
0 ≤ i ≤ k ¬c.p |[¬c.p]|i ⇔ ¬ϕ(c, p, i)

g1 ∧ g2 |[g1 ∧ g2]|i ⇔ |[g1]|i ∧ |[g2]|i
g1 ∨ g2 |[g1 ∨ g2]|i ⇔ |[g1]|i ∨ |[g2]|i
Xg |[Xg]|i ⇔ |[g]|i+1

Fg |[Fg]|i ⇔ |[g]|i ∨ |[Fg]|i+1

Gg |[Gg]|i ⇔ |[g]|i ∧ |[Gg]|i+1

g1Ug2 |[g1Ug2]|i ⇔ |[g2]|i ∨ (|[g1]|i ∧ |[g1Ug2]|i+1)
g1Rg2 |[g1Rg2]|i ⇔ |[g2]|i ∧ (|[g1]|i ∨ |[g1Rg2]|i+1)

7.6.2 Encoding of timed properties

The GTL allows the specification of timed verification properties, such as “x until[12s] y” which
means that x holds until y holds once after at least 12 seconds. To realize such operators, we extend
the LTL with two unary operators, .∼t and /∼t (with∼∈ {<,>,≤,≥,=}). Given a finite suffix πi of
π starting from the ith state, where the jth step takes ρ(j) time units, the semantics of these operators
is defined as follows:

πi |= .∼tψ ⇔ ∃n ≥ i such that πn |= ψ and
∑n

j=i ρ(j) ∼ t
πi |= /∼tψ ⇔ ∃0 ≤ n ≤ i such that πn |= ψ and

∑i
j=n ρ(j) ∼ t

With these operators defined, we derive timed variants of the operators U, R, F, and G:

ψ1U[t]ψ2 ⇔ ψ1Uψ2 ∧ .≤tψ2

ψ1R[t]ψ2 ⇔ ψ1Rψ2 ∨ .>t¬ψ2

F[t]ψ ⇔ .≤tψ
G[t]ψ ⇔ Gψ ∨ .>t¬ψ

We extend the LTL encoding with two new variable types:

• x(ψ)i states that there is a future state (≥ i) which fullfils ψ.
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• If x(ψ)i is true then x(ψ)i encodes the time until the state in which ψ holds is reached.

Since we are using an incremental encoding, the value of x(ψ)i may change from false to true when
increasing the k-bound. This can happen because ψ may hold at a state that is outside of the current
k-bound. Table 7.1 shows an example of this behaviour: In the k = 3 case, x(ϕ)1 is false, because no
state ≥ i within the k-bound satisfies ϕ. But in the k = 4 case, ϕ is true in the 4th state, which makes
x(ϕ)1 true. This behaviour is an under-approximation of the LTL formula, since it is guaranteed to be
in positive normal form. It is easy to see that .∼tψ is true exactly if ψ happens in the future and the

i 0 1 2 3 4
|[ϕ]|i > ⊥ ⊥ ⊥
x(ϕ)i 0 * * *
x(ϕ)i > ⊥ ⊥ ⊥
ρ(i) 1 2 1 1
|[.<2ϕ]|i > ⊥ ⊥ ⊥

;

i 0 1 2 3 4
|[ϕ]|i > ⊥ ⊥ ⊥ >
x(ϕ)i 0 4 2 1 0
x(ϕ)i > > > > >
ρ(i) 1 2 1 1 2
|[.<2ϕ]|i > ⊥ ⊥ > >

Table 7.1: The values of encoding variables for k = 3 and k = 4

time of its occurance satisfies the constraint ∼ t. Thus, we can replace it with x(ψ) ∧ x(ψ) ∼ t.
The complete encoding for these variables is as follows:

k-invariant |[.∼tψ]|i ⇔ (x(ψ)i ∼ t) ∧ x(ψ)i
0 ≤ i ≤ k |[ψ]|i ⇒ (x(ψ)i = 0) ∧ x(ψ)i

¬|[ψ]|i ⇒ (x(ψ)i = x(ψ)i+1 + ρ(i)) ∧ (x(ψ)i = x(ψ)i+1)

k-variant ¬x(ψ)k+1

7.7 LLVM verification of contracts

Instead of just allowing component models to be described in SCADE, we also developed a local
verification for component models written in a LLVM-supported language. With it, users of the
GTL-tool can either write component models in C or C++, or use the SCADE code generator (called
“KCG”) to transform a SCADE model into C. A C-model must be in a specific form in order to be
verifiable against a GTL-contract 4:

• A single data structure which holds the state information and the output variables of the com-
ponent.

• An initialization function which takes a pointer to the state data structure and returns nothing
(void). It resets both the internal state and the output variables of the component to its initial
state. This is required because the values that a freshly allocated data structure can have are
often random or zero, while many models require initialization values which aren’t zero.

• A function which performs a calculation step in the model. This function takes as argument all
the input variables of the model and a pointer to the state data structure. It reads the current
state of the model from that pointer and updates the state and output variables according to the
input variables and the current state. Like the initialization function, it returns no value.

4To allow for an easy verification of translated SCADE models, the format generated by the SCADE KCG conforms to
this format.
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The following code is an example of a C model which simulates a modulo counter. The model has
one input, “tick”, which indicates whether or not the counter value shall be increased. If it is true, the
value of the counter is increased and compared to a “modulo value”. In the case that it is equal to this
value, the counter is reset to zero and a “tick” is produced.

1 # i n c l u d e <s t d b o o l . h>
2
3 t y p e d e f s t r u c t {
4 i n t cu r va l ;
5 i n t mod val ;
6 boo l t i c k o u t ;
7 } c o u n t e r ;
8
9 void i n i t ( c o u n t e r * c ) {

10 c−>cu r va l = 0 ;
11 c−>mod val = 5 ;
12 c−>t i c k = f a l s e ;
13 }
14
15 void s t e p ( boo l t i c k i n , c o u n t e r * c ) {
16 i f ( t i c k i n ) {
17 c−>cu r va l ++;
18 i f ( c−>cu r va l == c−>mod val ) {
19 c−>t i c k o u t = t r u e ;
20 c−>cu r va l = 0 ;
21 } e l s e {
22 c−>t i c k o u t = f a l s e ;
23 }
24 } e l s e {
25 c−>t i c k o u t = f a l s e ;
26 }
27 }

This example would be included into a GTL-specification as follows:

1 model [ c ] c o u n t e r ( ” c o u n t e r . c ” , ” c o u n t e r ” , ” i n i t ” , ” s t e p ” ) {
2 . . .
3 }

The LLVM code checker works by checking user-defined assertions. Since the code checker has
yet to be extended with the possibility to define liveness properties, we can only verify (as in the
SCADE backend) contracts which represent safety properties of the model. The user can generate non-
deterministic values by using the function “nondet t”, where t is the type of the non-deterministic
value.

For example, the contract always cur val < 5 would be verified by checking the following
code for assertion violations:

1 i n t main ( i n t argc , c o n s t char * a rgv [ ] ) {
2 c o u n t e r c ;
3 boo l t i c k i n ;
4 i n i t (&c ) ;
5 whi le ( 1 ) {
6 a s s e r t ( c . cu r va l < 5) ;
7 t i c k i n = nonde t boo l ( ) ;
8 s t e p ( t i c k i n ,& c ) ;
9 }
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10 re turn 0 ;
11 }
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Chapter 8

Verification of GALS models

In this section we describe how the GTL language and the model transformations described in the
previous subsections (also cf. Section 1.2 and Fig. 1.1) are used to verify a GALS system.

8.1 Abstraction by contracts

We begin with a minimalistic example that demonstrates how contracts are used to abstract the real
components. Our system consists of two components: a source component and a sink component.
The source component is a simple mod 10 counter and produces the following sequence of numbers
at its only output:

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 2, . . .

The output outp of the source component is connected with the only input inp of the sink component.
The sink simply checks whether its input flow is less than 12 and sets the output to 0 in that case and
to 1 otherwise. Fig. 8.1 shows the two corresponding SCADE models.

Figure 8.1: SCADE models of two simple components

Let us assume we want to verify that the output value of the sink is always 0. As contracts for the
components we specify that the source always produces values less then 10. And the sink outputs 0 if
its input value is less then 10. This yields the following GTL specification:

1 model [ s c a d e ] s o u r c e ( ” s o u r c e s i n k . s c a d e ” , ” Source ” ) {
2 c o n t r a c t always ou tp < 1 0 ;
3 }
4
5 model [ s c a d e ] s i n k ( ” s o u r c e s i n k . s c a d e ” , ” S ink ” ) {
6 i n i t ou tp 0 ;
7 i n i t i n p 9 ;
8 c o n t r a c t always ( i n p < 10 => ou tp =0) ;
9 }

10
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11 connect s o u r c e . ou tp s i n k . i n p ;
12
13 v e r i f y {
14 always s i n k . ou tp =0;
15 }

Listing 8.1: source and sink

Clearly, the above contracts hold for the two SCADE models from Fig. 8.1. Of course, this can
easily be checked using the SCADE DV.

In addition, the contracts clearly specify an abstraction of the concrete SCADE components. In
fact, there are many different SCADE implementations of the source and sink components that will
satisfy those contracts.

The meaning of the contract for the source is that the source component will non-deterministically
exhibit every behavior admitted by the contract; in this case its output has any value less then 10 non-
deterministically. So contracts abstract components by under-specification.

For our simple example, Fig. 8.2 shows the Büchi automata generated from the GTL specification

inp outp
inp ≥ 10

outp = 1outpoutp < 10

Figure 8.2: Source-Sink contract automata

In general, because of this underspecification it follows that for a verification goal specifying a
safety property we have the following:

If the abstract model satisfies the verification goal, then so does the concrete model.

Indeed, a safety property states that certain states of a system are never reached. So if the abstract
model (having more possible behavior than the concrete one) satisfies the property so does the concrete
model.

It is well-known (see e. g. [18]) that such a statement is false for liveness properties. The reason is
that our abstract model exhibits more behavior than the concrete model and so properties stating that
something will eventually happen might be true in an abstract model while false in the concrete one.

8.2 Verification steps

The transformations are being implemented prototypically within the GTL tool. Using this tool the
verification of a GALS system is performed as shown in Fig. 8.3. Here we explain the workflow using
PROMELA as back end language for GALS models and SPIN as analysis tool. But, of course, a very
similar workflow is performed when we use UPPAAL timed automata instead.

We now describe the involved steps more detailed:

1. Suppose the SCADE models of components and abstract GALS model as a GTL-specification are
given. The contracts for each component are translated with the GTL tool to SCADE synchronous
observers (cf. Section 7.4) that are used by the SCADE DV to establish that the components satisfy
their contracts.
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SCADESPINGTL

contract verification

GALS verification

correct SCADE modelsrefine contract

generate native GALS model

create SCADE modelscreate contracts

simulation of error trace

[contract valid?] 

[yes] 

[no] 

[verification goal valid?] 

[yes] [no] 

generate GALS model

[false negative?] 

[no] [yes] 

Figure 8.3: Verification of GALS systems

Notice that guaranteed behaviors are not translated to SCADE observers in this step because they
represent component behavior that is known to hold for the components and has already been
verified previously.

2. If a component does not satisfy its contract this can have two reasons: (a) there is an error in the
corresponding SCADE model, and after this error has been corrected one goes back to step 1; (b)
the contract formulates a requirement that is too strong, and, hence, the contract must be weakened
before step 1. is repeated.

3. Otherwise, all components satisfy their contracts, and one now uses the GTL tool to generate from
the given abstract GALS model in GTL a representation in PROMELA.

4. The analysis of the verification goals on the PROMELAGALS model is performed with SPIN. If
the verification is successful, we are done. Otherwise, some verification goal does not hold for the
GALS model of contracts, and SPIN produces a corresponding error trace.

5. With the help of the GTL tool one now generates the concrete GALS models in PROMELA. This
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means that the GTL tool automatically integrates the C code generated from the SCADE models
of the components is integrated into a GALS system model in PROMELA.

6. The resulting concrete GALS model is simulated with the error trace from step 4., and it is checked
whether this system does indeed exhibit the faulty behavior from the error trace.

7. If this is the case, we have found a real error in the GALS model, and the SCADE models of the
components do not correctly compose to a system. The error has to be analyzed further, which
should eventually result in one or more SCADE models of system components to be adjusted or
corrected. This debugging process can be supported by the GTL tool in two ways: from the given
error trace one can generate

(a) a global schedule which contains the inputs and outputs for the system and its components
plus the information at what time each component makes steps until the state violating the
verification goal is found, and

(b) for each component a SCADE simulator script containing the inputs for as many cycles of the
component as occurring in the global schedule from (a).

When all necessary corrections of SCADE models are completed one repeats the verification from
step 1.

8. Otherwise, the concrete GALS model does not exhibit the faulty behavior from the given error
trace, and we have thus a “false negative” verification result. This means that one or several
component contracts are too weak to force the desired verification goal to hold. These contracts
need to be refined, and then one repeats the verification from step 1.

8.3 Refinement of contracts

As we saw previously, a failed verification can imply a “false negative”, which means that certain
contracts in an abstract GALS model are not strong enough and need to be refined. We envision two
methods how contract refinement can be achieved:

(1) One uses guaranteed behavior for refinement. Indeed, recall that guaranteed behaviors are certain
contracts that are known to hold for their corresponding component. For example, these could be
LTL formulations of requirements that have been verified for a component during some previous
module or component test. Typically the guaranteed behaviors will not be used when a GTL
specification is translated to its corresponding abstract GALS model as they might blow up the
complexity of this model. But in the case of a “false negative” one can consider guaranteed
behaviors as real contracts and take them into account when generating the abstract GALS model
from the GTL specification. In this way contracts are refined, and in a subsequent verification
step (see step 4. in Section 8.2) one hopes to verify that the verification goal in question holds for
the GALS model.

Notice that this kind of refinement can be performed automatically.

(2) The second possibility for refinement of component contracts is to use the error trace produced
together with a negative outcome of a verification in step 4. from Section 8.2. This idea is inspired
by counter example guided abstraction refinement [34].
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In the case of a “false negative” this error trace describes a run of the system where the concrete
model behaves correctly. Hence, from the error trace yields a system test case with concrete input
values that the concrete GALS model passes. Now, the idea is to use this passed system test to
refine the abstract GALS model by new contracts with the goal to be able to verify the original
verification goal.

However, it is not sufficient to just observe a component’s in- and outputs during the run of the
passed system test and translate this to an equivalent LTL formulation to refine the component’s
contract. This will refine the contract but only in such a way that re-verification of the failed
verification goal will produce a longer counterexample.

Instead, one must use the information from the passed system test to formulate a new contract
that further constrains the behavior of the specified component. This can be done, for example,
by extracting an invariant Gϕ, where ϕ is a propositional formula, a (bounded) response property
G(ϕ =⇒ Fψ), where ϕ, ψ are propositional formulas or an equivalent formulation using
automata in GTL, respectively.

Notice that this technique requires creative human intervention to formulate a new contract for re-
finement of components. This can be supported by the automatic generation of SCADE simulator
scripts from the given passed system test (represented by the given error trace from the previous
model checking step) as mentioned in step 7(b) above.
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Chapter 9

Bounded Model Checking and
Model-Based Testing

Note. The results presented in this chapter have been elaborated in cooperation with the EU FB7
research project COMPASS which is funded under grant agreement no.287829.

9.1 Model-Based Testing

In the VerSyKo project and in the COMPASS project, model-based testing support is provided by
the RT-Tester tool with its MBT component RTT-MBT. RT-Tester is an industrial strength tool for
model-based testing of reactive concurrent real-time systems [82, 97].

Following the definition currently given in Wikipedia1

Model-based testing (MBT) is the application of Model based design for designing and
optimally executing the necessary artefacts to perform software testing. Models can be
used to represent the desired behaviour of the System Under Test (SUT), or to represent
the desired testing strategies and testing environment.

In this definition only software testing is referenced, but it applies to hardware/software integration
and system testing just as well. Observe that this definition does not require that certain aspects
of testing – such as test case identification or test procedure creation – should be performed in an
automated way: the MBT approach can also be applied manually, just as design support for testing
environments, test cases and so on. This rather unrestricted view on MBT is consistent with the one
expressed in [12].

Automated MBT has received much attention in recent years, both in academia and in indus-
try. This interest has been stimulated by the success of model-driven development in general, by
the improved understanding of testing and formal verification as complementary activities, and by
the availability of efficient tool support. Indeed, when compared to conventional testing approaches,
MBT has proven to increase both quality and efficiency of test campaigns; we name [?] as one ex-
ample where quantitative evaluation results have been given. In this report the term model-based
testing is used in the following, most comprehensive, sense: the behaviour of the system under test
(SUT) is specified by a model elaborated in the same style as a model serving for development pur-
poses. Optionally, the SUT model can be paired with an environment model restricting the possible

1http://en.wikipedia.org/wiki/Model-based testing, (date: 2012-06-14).
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Figure 9.1: The model-based testing paradigm

interactions of the environment with the SUT. A symbolic test case generator analyses the model
and specifies symbolic test cases as logical formulas identifying model computations suitable for a
certain test purpose. Constrained by the transition relations of SUT and environment model, a solver
computes concrete model computations which are witnesses of the symbolic test cases. The inputs to
the SUT obtained from these computations are used in the test execution to stimulate the SUT. The
SUT behaviour observed during the test execution is compared against the expected SUT behaviour
specified in the original model. Both stimulation sequences and test oracles, i. e., checkers of SUT
behaviour, are automatically transformed into test procedures executing the concrete test cases in a
model-in-the-loop, software-in-the-loop, or hardware-in-the-loop configuration.

Observe that this notion of MBT differs from “weaker” ones where MBT is just associated with
some technique of graphical test case descriptions. According to the MBT paradigm described here,
the focus of test engineers is shifted from test data elaboration and test procedure programming to
modelling. The effort invested into specifying the SUT model results in a return of investment, be-
cause test procedures are generated automatically and debugging deviations of observed against ex-
pected behaviour is considerably facilitated because the observed test executions can be “replayed”
against the model. Moreover, V&V processes and certification are facilitated because test cases can be
automatically traced against the model which in turn reflects the complete set of system requirements.

In Fig. 9.1 the MBT paradigm is sketched as described in Wikipedia as referenced above. There
the term abstract tests is used for symbolic test cases, and executable tests for test procedures.

9.2 Development Models Versus Test Models

The reference model used for a MBT campaign may

• coincide with the model used to generate the SUT code according to the model-driven develop-
ment approach, or

• consist of a separate model developed by the V&V team,
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as depicted in Fig. 9.2. In the former case tests are derived from the development model, so there
are no possibilities to uncover logical, functional errors during testing, because the tests just ensure
that the SUT behaves in a way which is consistent with the development model. This MBT variant
is useful if the development model has been exhaustively verified with respect to correctness and
validated with respect to completeness. The objective of the test suite is then only to verify whether
the generated code is a correct refinement of the development model.

The latter case is to be applied in situations where

• the development model cannot be trusted with respect to correctness and completeness, or

• the level of abstraction of the test model is unsuitable for the test objectives.

In automated model-driven development models often show a greater level of detail than needed for
testing: development models need to capture internal task structures, communication channels and
event handlers which are not relevant, for example, when designing a black-box testing campaign
only monitoring or stimulating the hardware interfaces of the SUT. In these cases the V&V team
creates separate test models from the development models and from their own interpretation of the
requirements. As a consequence, the test model may be at a differentlevel of abstraction than the
development model and describe a SUT behaviour that deviates from the one captured in the devel-
opment model. The test suite may detect both deviations between code and development model and
logical, functional errors in the development model.

9.3 Basic MBT Automation Techniques

The RT-Tester architecture supporting automated MBT is depicted in Fig. 9.3. Test models are parsed
in textual format (typically XMI) by the parser front end, and the model is internally represented by
an abstract syntax tree (AST), called the RT-Tester internal model representation (IMR). The test case
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Figure 9.3: Test procedure generation using test case generator and SMT solver.

generator traverses the AST and identifies relevant test cases based on the syntactic model represen-
tation. Test cases are represented in symbolic form, that is, as logical formulas G(s0, s1, . . . , sc) over
consecutive state valuations s0, s1, . . . , sc: any test objective can be encoded as a formula specifying
the characteristics of a finite sequence of states (also called a trace) to be traversed for meeting this
objective.

The transition relation generator traverses the AST with the objective to encode the model’s
operational semantics as a transition relation Φ(si, si+1) relating states si to their post-states si+1.
Mixed traces of event occurrences and state changes can also be internally encoded as formulas over
states si, si+1.

Concrete test data is created by solving constraints of the type

J(s0) ∧
n∧

i=0

Φ(si, si+1) ∧G(s0, . . . , sn+1)

using the integrated SMT solver SONOLAR [79]. In such a formula, conjunct J(s0) characterises the
current model state from where the next test objective G(s0, . . . , sn+1) should be covered. Conjunct∧n
i=0 Φ(si, si+1) ensures that the solution of G(s0, . . . , sn+1) results in a valid trace of the model,

starting from s0.
Finally the test procedure generator takes the solutions calculated by the SMT solver and turns
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them into stimulation sequences, that is, timed input traces to the SUT. Moreover, the test procedure
generator creates test oracles from the model components describing the SUT behaviour.

Formulas of the type displayed above are called bounded model checking instances (BMC in-
stances)2: in BMC models are verified in the vicinity of states s0, whether an undesirable property
G(s0, . . . , sn+1) – for example, a safety violation – can be realised within n transition steps from s0.
The difference between test generation and model checking lies in the expectation whether a solution
for G(s0, . . . , sn+1) can be found: for a reasonably defined symbolic test case many solutions of the
formula should exist, while solutions of the formula during model checking always uncover a model
error. Since the SMT solver is able to find solutions for BMC instances, we can exploit this both for
test generation and for local verification of test models.

9.4 Model-Based Test Case Generation

Test cases can be derived from the model in an automated way. The strategies needed for this purpose
are described in this chapter. Moreover, test experts may define their own “special-purpose test cases”;
this is explained in Section 9.7.

9.5 Computations, Traces and Model Coverage

In our context of model-based testing, the behavioural semantics of test models is expressed by the
set of its computations, that is, its infinite sequences c = s0.s1.s2 . . . of state changes that may be
executed by the model in accordance with the rules of its operational semantics. Note that events and
time are also encoded in the states si, so that each state is a complete snapshot of internal model state
and interface activities.

A trace is a finite prefix of a valid model computation. When testing, only traces of the model can
be stimulated and observed. An input trace is a finite sequence of inputs passed to the SUT model
portion over its input interfaces. Interfaces are realised by property values travelling over ports along
item flows, and by signal events.

We say that a trace π = s0 . . . sn covers a structural model element (flow ports, blocks) if the
state sequence triggers state changes or behaviours of the element under consideration. Examples for
traces covering structure are

• state sequences where the properties associated with a flow port change their value (“the trace
covers the port”),

• state sequence leading to state machine transitions in a machine associated with a block (“the
trace covers the block and its higher-level blocks”).

Behaviour is expressed by operations and state machines in the model. Trace π is said to cover a
behaviour of the model if it triggers the operations and (potentially concurrent) state machine transi-
tions realising this behaviour.

2The notion of BMC instances is inspired by the term SAT instance used for Boolean formulas whose solvability is to
be checked by SAT solvers.
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9.6 Model Coverage Strategies

Model-derived test strategies aim at covering certain parts of the model structure and (a subset of) its
behaviours. The basic model coverage strategies are well-defined and well-explored, see, for exam-
ple [98] for a comprehensive discussion. For concurrent real-time systems, however, and for large-
scale concurrent systems, test strategies still require active research. In Fig. 9.4, 9.5, 9.6 an overview
of these strategies is given, and we will discuss them in the paragraphs below.

BCS – Basic Control State Coverage. This type of behavioural coverage aims at covering each
basic control state of each state machine at least once. No additional objectives are made about
concurrent control states or accompanying variable valuations when reaching the control state under
consideration. Using the general test case formula pattern

J(s0) ∧
n∧

i=0

Φ(si, si+1) ∧G(s0, . . . , sn+1)

introduced in Section 9.3, BCS leads to formulas of the type

J(s0) ∧
n∧

i=0

Φ(si, si+1) ∧G(sn+1)

with
G(sn+1) ≡ sn+1(`)

where ` is the name of the BCS to be covered. Control states are interpreted as Boolean variables, so
sn+1(`) evaluating to true means that the corresponding state machine resides in location ` in the
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state reached after the (n+ 1)th transition step. Using linear temporal logic [35] LTL, the goal can be
expressed by

F `

Observe that the goal shall be reached in state sn+1. This means that at least one transition step
will be performed: if basic control state ` is already active in s0, that is, ifG(s0) holds, we do not need
to solve a BMC instance, but can directly mark G as covered. This observation applies throughout the
paragraphs below where different types of goal will be introduced.

TR – Transition Coverage. Transition coverage aims at covering each transition τ of every state
machine in the model. Again, no restrictions are made regarding variable valuations, control states and
concurrent transitions to be performed when the one under consideration is triggered. The associated
goal can be expressed as

G(sn+1) ≡ sn+1(trigger(τ)) or in LTL as F trigger(τ)

Intuitively speaking, trigger(τ) specifies that the required event triggering τ is available in the event
pool, the guard condition evaluates to true, and no higher-priority transition is enabled in model
state sn+1.

MCDC – MC/DC Transition Coverage. Modified condition/decision (MC/DC) coverage is a vari-
ant of transition coverage, where non-atomic guard conditions are evaluated in a systematic manner.

• If a transition guard has the structure a∧ b, then the transition should be tested several times, so
that at least the condition valuations

a ∧ b
¬a ∧ b
a ∧ ¬b

are covered.

• If a transition guard has the structure a∨ b, then the transition should be tested several times, so
that at least the condition valuations

¬a ∧ ¬b
¬a ∧ b
a ∧ ¬b

are covered.

71



For the general case, we express guard conditions g in conjunctive normal form of atomic propositions
gji

g ≡
u∧

i=0

ki∨

j=0

gji

(this transformation is performed automatically by RTT-MBT) and define

• Stability test goals. A minimal number of terms
∨ki
j=0 g

j
i – if possible for exactly one i ∈

0, . . . , u – evaluate to false, all others evaluate to true. The stability test is performed for
as many i as possible.

• Progress test goals. All conjuncts
∨ki
j=0 g

j
i evaluate to true, but in each conjunct only a

minimal number of gji – preferably just for one j – evaluate to true. The progress tests are
performed for as many different combinations of gji evaluating true as possible.

As test goals, stability tests can be expressed as

Gi(sn+1) ≡ sn+1


e ∧ ¬(

ki∨

j=0

gji ) ∧
u∑

h=0

(

kh∨

j=0

gjh) = u


 , i = 0, . . . , u

or

F


e ∧ ¬(

ki∨

j=0

gji ) ∧
u∑

h=0

(

kh∨

j=0

gjh) = u




In these definitions e denotes the event triggering τ . Identifying Boolean values true,false with
1, 0, respectively, the term

∑u
h=0(

∨kh
j=0 g

j
h) evaluates to the number of conjuncts evaluating to true

in state sn+1, so
∑u

h=0(
∨kh
j=0 g

j
h) = u specifies that all but one conjuncts evaluate to true. If there

is no solution for this constraint, one can try to solve (
∑u

h=0

∨kh
j=0 g

j
h) ≥ p for some suitable p < u.

For progress tests, the goals look like

Gm1...mu(sn+1) ≡ sn+1


trigger(τ) ∧

u∧

i=0


gmi

i ∧
ki∑

j=0

gji = 1






or, in LTL,

F


trigger(τ) ∧

u∧

i=0


gmi

i ∧
ki∑

j=0

gji = 1






conjunct trigger(τ) states that the transition will be triggered. Every conjunct of the guard condi-
tion has exactly one disjunct gmi

i which evaluates to true, all other ones evaluate to false; this
is expressed by the constraint

∑ki
j=0 g

j
i = 1. If possible, test cases should be generated for every

combination of (m1, . . . ,mu) ∈ {1, . . . , k1} × . . . × {1, . . . , ku}. If no solution exists fulfilling∑ki
j=0 g

j
i = 1, then weaker constraints

∑ki
j=0 g

j
i ≤ c, c > 1 can be used.
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HITR – Hierarchic Transition Coverage. For transitions τ emanating from higher-level control
states, different underlying basic control states can be active when τ is triggered. Hierarchic transition
coverage aims at exercising τ once for every underlying basic control state being active. Let τ =
(`0, p, e, g, α, `1) a transition of some state machine sm and and

H = {` ∈ BCS(sm) | ` 6= start(psm(`)) ∧ `0 ∈ [`, sm]}

Set H contains all basic control states having `0 as their ancestor and which are not start states (be-
cause the state machine never resides in a start state). The HITR requires to test all objectives

G`(sn+1) ≡ sn+1(trigger(τ) ∧ `), ` ∈ H

expressed in LTL as
F(trigger(τ) ∧ `), ` ∈ H

EQ – Equivalence Class Coverage. The “classical” method of equivalence class partition testing is
justified for applications where certain setsA of states are processed in an equivalent manner, typically
by using the same data transformation f on each member of such a partition. In this situation, it
is possible to select a few members from A for testing whether an illegal mutation of f has been
implemented. As a consequence equivalence class partition testing has a relationship to mutation
testing, where test data sets are expressly selected for the purpose of uncovering certain types of
mutations.

For adequate test strength of equivalence class testing of reactive systems it is necessary to traverse
on certain paths between classes. As a consequence, test objectives are of the form

G(s0, . . . , sn+1) ≡
n+1∧

i=0


si(

∧

p∈Ai

p)


 ∧G(sn+1, . . . , sn+k)

where Ai are equivalence classes, each characterised as a set of atomic propositions p over the model
variables. Test objectives of this type specify that the SUT performs a trace π = s0 . . . sn+1, such
that each si is member of a given class Ai. After the last class has been reached in state sn+1,
additional condition G(sn+1, . . . , sn+k) specifies a trace continuation sn+2 . . . sn+k that is suitable
to uncover errors in the data transformation applied on members of An+1. Depending on the type
of data transformations f , different numbers of conditions G have to be applied, because a mutant
f ′ of data transformation f may yield the same transformation results as f for some states of An+1.
The classes Ai can be derived from the model AST in a syntactic way by collecting the constraints
guarding behaviours using identical data transformations. The feasibility of traces π = s0 . . . sn+1

visiting sequences A0 . . . An+1, however, has to be explored using an SMT solver.
In LTL such a test objective is expressed as

F


(

∧

p∈A0

p) ∧ (X(
∧

p∈A1

p) ∧ (. . . ∧ (X((
∧

p∈An+1

p) ∧G) . . .)




A formalised approach to equivalence class partition testing has been worked out in [48], but
without formal justification of the test strength of this method. Indeed, equivalence class partition
testing can be applied to achieve exhaustive test results, so that any error in the SUT will be uncovered,
if certain boundary conditions are met. This property can be applied to justify the partitions used in a
testing campaign. This is explored in Detail in Chapter 10.
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For SoS testing the EQ strategy will be applied to identify equivalent behaviours of constituent
systems (for example, classes of certain mission threads), so that only some representatives of each
class have to be executed during SoS system integration tests.

BV – Boundary Value Test Coverage. The well-known technique of Boundary value testing is
closely linked to EQ testing, since it specifies special candidates to be selected from each equivalence
class partition: by taking states si at the boundary of classes Ai, the error detection strength is gen-
erally increased, because typical bugs like the confusion of < and ≤ can be uncovered using such
boundary candidates.

For reactive real-time systems boundary value testing applies to timed traces π = s0 . . . sn+1, so
that as many states si as possible should lie on the boundary of a class Ai. Boundary values come
both from the value and from the time domain (“just before the timer elapses, the expected event is
received . . . ”).

The logical formulas for expressing test objectives look like the ones defined for equivalence class
testing objectives, but they additionally require that a subset of visited states should lie at the boundary
of their class.

GB(s0, . . . , sn+1) ≡
∧n+1
i=0

(
si(
∧
p∈Ai

(p ∧ (i ∈ B ⇒ si(boundaryAi))))
)
∧

G(sn+1, . . . , sn+k), B ⊆ {0, . . . , n+ 1}
Predicates boundaryAi can be mechanically generated from a syntactic analysis of the atomic propo-
sition contained in Ai.

For robustness testing the conditions are changed in a way that state sn+1 lies in a neighbouring
class of An+1 and there just at its boundary.

MCDCHITR – MC/DC Hierarchic Transition Coverage. This HITR variant exercises high-level
transitions with different guard valuations, as defined for MCDC coverage above.

The model-based coverage criteria specified so far are well known and accepted in MBT, and
some of them have close relationships with code coverage strategies. This is not surprising, since
programs are models, too, so code coverage can be regarded as model coverage. The following
strategy is still a research topic, and it has been specifically designed by the authors for testing large
concurrent systems, where complexity does not allow the representation of the SUT model as a single
state machine, built from the product of several concurrent state machines3.

BCSPAIRS – Basic Control State Pairs Coverage. A model state s is a function mapping all sym-
bols (variables, basic control states, time) from a set V to their current value in some domain D. We
also call s a state vector and optionally use vector notation (s(v1), . . . , s(vn)) if V = {v1, . . . , vn}.
In model state s the active basic control state vector is the vector (`1, . . . , `m) indexed of the number
of concurrent state machines smi in the model, so that each basic control state of this vector is part of
the active configuration in state s, that is, if

∧
i=1,...,m s(`i) holds.

Large concurrent systems consist of so many state machines that test suites could never cover all
basic control state vectors (let alone all complete state vectors) from the concurrent state machines
involved. The basic control state pairs coverage considers pairs of state machines in writer/reader
relationship. For these the possible combinations of control state pairs should be covered by test

3If such a product construction were possible, test strategies introduced successfully for verifying sequential systems
could be applied for the concurrent one, too.
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Figure 9.6: Structural coverage strategies for MBT.

suites, since exercising all of these pairs is likely to uncover errors in the writer/reader interaction. Let
RW ⊆ SM × SM the relationship characterising writer/reader pairs. Then the BCSPAIRS strategy
aims at covering all test cases of the form

G(`1,`2)(sn+1) ≡ sn+1(`1 ∧ `2), (`1, `2) ∈ RW

written in LTL as
F(`1 ∧ `2), (`1, `2) ∈ RW

IC – Interface Coverage. Interface coverage is achieved by changing the component values of a
given interface. If the interface vector components are (x1, . . . , xn), the test goals are therefore

GJ(sn, sn+1) ≡
∧

i∈J
sn+1(xi) 6= sn(xi), J ⊆ {1, . . . , n}

This goal specifies that for a given subset of interface components identified by indexes from J the
valuation should change in the (n+ 1)th transition step. In LTL this is expressed as

∀i ∈ J : ∃di ∈ D : F

(
(
∧

i∈J
xi = di) ∧X(

∧

i∈J
xi 6= di)

)

Input interface coverage should be achieved for as many subsets J ⊆ {1, . . . , n} as possible, since
some combinations of simultaneous changes may provoke faulty SUT reactions. For testing large
GALS systems, the dimension n of interface vectors would generally be far too large to test all the
2n−1 index combinations J . Here methods like pairwise testing in combination with orthogonal array
are more adequate, but even the number

(
n
2

)
of pairs will be too large for exhaustive coverage. We

therefore apply data flow analysis techniques on the model in order to determine which pairs (xi, xj)
are jointly used4 in state machines or operations.

BC – Block Coverage. The lowest level of block coverage is achieved by triggering some behaviour
associated with the block, such as a transition of an underlying state machine or the execution of an
operation defined in the block. Since blocks and their descendants may be regarded as sub-models,
all behavioural coverage criteria listed in this section may be applied locally to the block. This aspect
is relevant in regression testing, where the test focus might be on single blocks of a model which has
been changed since the last baseline. It is therefore adequate to allow MBT tool users to specify the
strategies to be applied on a per-block basis (and not just for the whole model).

4The use may either be directly, when referring to xi, xj or indirectly when using some variable v where previous
assignments from xi, xj have been performed.
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9.7 User-Defined Test Cases

As described in Section 9.6, test cases specify traces π = s0 . . . sn which are suitable witnesses to test
a certain test objective. Obviously the BMC instance notation

J(s0) ∧
n∧

i=0

Φ(si, si+1) ∧G(s0, . . . , sn+1)

introduced above, while being appropriate as input to an SMT solver, is not a suitable candidate for
manual specification of symbolic test cases. In the previous chapter, however, we have seen that
certain types of BMC instances may be equivalently expressed by LTL formulas.

While LTL formulas are well-suited to specify computations fulfilling a wide variety of con-
straints, it has to be noted that it is also capable of defining properties of computations that will never
be tested in practice, because they can only be verified on infinite computations and not on finite trace
prefixes thereof (e. g., fairness properties). It is therefore desirable to identify a subset of LTL formu-
las that are tailored to the testers’ need for specifying finite traces with certain properties. This subset
is called SafetyLTL and described in the next section.

9.7.1 SafetyLTL

SafetyLTL has been introduced in [90], and is suitable for defining safety properties of computa-
tions, that is, properties that can always be falsified on a finite computation prefix. SafetyLTL can be
syntactically characterised by the following rules.

• Negation is only allowed before atomic propositions (so-called negation normal form).

• Disjunction ∨ and conjunction ∧ are always allowed.

• Next operators X, globally operators G and weakly-until operators W are allowed.

• Semantically equivalent formulas also belong to SafetyLTL.

Recall that the weakly-until operator is defined as

φW ψ ≡def (φU ψ) ∨Gφ

Using W, the more common until operator can be expressed by

φU ψ ≡ (φW ψ) ∧ Fψ

and for finite traces π = s0 . . . sn formula Fψ can be expressed as

ψ ∨Xψ ∨XXψ ∨XXXψ ∨ . . . ∨X . . .X︸ ︷︷ ︸
n times

ψ

For finite traces π, fulfilling Gψ means that π does not violate this formula. We could use the
notation

ψ ∧Xψ ∧XXψ ∧XXXψ ∧ . . . ∧X . . .X︸ ︷︷ ︸
n times

ψ

as an alternative to Gψ.
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9.7.2 Encoding SafetyLTL Formulas as BMC Instances

The semantic rules for evaluating LTL formulas on finite trace segments si.si+1 . . . sk are specified
using notation 〈ϕ〉ki . The recursive rules for evaluating the truth value of 〈ϕ〉ki can be directly trans-
formed into an algorithm unrolling 〈ϕ〉ki into a proposition no longer involving any temporal operators
(F,G,X,U,W), but referring to variable valuations in states si, si+1 . . . , sk and Boolean operators
¬,∧,∨ only. Observe that we omit the semantics for G here, because our witnesses are always repre-
sented by finite trace segments si.si+1 . . . sk without loops, whereas Gϕ only holds true if the trace
segment has a lasso shape, where previous state on the segment is re-visited, thereby creating a cycle.
The BMC semantics of G is discussed in detail in [21].

The remaining transformation rules applicable for data validation are (symbols p denote atomic
propositions)

〈ϕ〉ki ≡ false for all i > k

〈p〉ki ≡ p[si(v)/v | v ∈ free(p)] Note that bound(p) = ∅
〈¬ϕ〉ki ≡ 〈ϕ〉ki is false

〈ϕ ∧ ψ〉ki ≡ 〈ϕ〉ki and 〈ψ〉ki are true

〈ϕ ∨ ψ〉ki ≡ 〈ϕ〉ki or 〈ψ〉ki are true

〈(∃b : ϕ)〉ki ≡ 〈ϕ〉ki ∧
k−1∧

j=i

(sj(b) = sj+1(b))

Note that b occurs free in RHS formula

and extends domains of sj , sj+1, . . . , sk by b

〈ϕUψ〉ki ≡ 〈ψ〉ki ∨ (〈ϕ〉ki ∧ 〈ϕ[b′/b | b ∈ bound(ϕ)]Uψ〉ki+1)

〈ϕWψ〉ki ≡ 〈ψ〉ki ∨ (〈ϕ〉ki ∧ ((i < k ∧ 〈ϕ[b′/b | b ∈ bound(ϕ)]Wψ〉ki+1) ∨ i = k))

〈Xϕ〉ki ≡ 〈ϕ〉ki+1

〈Fϕ〉ki ≡
k∨

j=i

〈ϕ〉kj

These transformation rules explain how to transform a LTL formula into an “ordinary” proposition
G(s0, . . . , sn+1), representing a test objective or a violation of desired model properties (see next
section). In conjunction with the condition that the solution trace shall be a valid trace of the model.
This results exactly in a BMC instance of the form discussed above, and this instance can be handled
by the SMT solver.

Example 9.7.1. Consider the BMC evaluation of property φ ≡ (∃b : y = b ∧X(y = b+ 1))U(x >
10), whose intuitive meaning is “variable y shall be incremented by 1 in each step, until a state is
reached where x > 10 holds”.

Suppose we wish to evaluate φ on trace segment s0.s1.s2, that is,

〈(∃b : y = b ∧X(y = b+ 1))U(x > 10)〉20
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Applying the rules above, this is unrolled to

〈(∃b : y = b ∧X(y = b+ 1))U(x > 10)〉20 ≡
〈(x > 10)〉20 ∨
(〈(∃b : y = b ∧ X(y = b+ 1))〉20 ∧
〈(∃b′ : y = b′ ∧ X(y = b′ + 1))U(x > 10)〉21) ≡
(s0(x) > 10) ∨
(〈(y = b) ∧ X(y = b+ 1))〉20 ∧∧1
j=0 (sj(b) = sj+1(b)) ∧
〈(∃b′ : y = b′ ∧ X(y = b′ + 1))U(x > 10)〉21) ≡
(s0(x) > 10) ∨
((s0(y) = s0(b)) ∧ X(s1(y) = s1(b) + 1)) ∧∧1
j=0 (sj(b) = sj+1(b)) ∧

((s1(x) > 10) ∨
(s1(y) = s1(b′) ∧ s2(y) = s2(b′) + 1) ∧ (s1(b′) = s2(b′)) ∧
〈(∃b′′ : y = b′′ ∧ X(y = b′′ + 1))U(x > 10)〉22) ≡
(s0(x) > 10) ∨
((s0(y) = s0(b)) ∧ X(s1(y) = s1(b) + 1)) ∧∧1
j=0 (sj(b) = sj+1(b)) ∧

((s1(x) > 10) ∨
((s1(y) = s1(b′)) ∧ (s2(y) = s2(b′) + 1) ∧ (s1(b′) = s2(b′)) ∧
((s2(x) > 10) ∨ ((s2(y) = s2(b′′)) ∧ false)))

2

9.8 Bounded Model Checking of LTL Properties

For bounded model checking, the same transformation of LTL formulas ϕ to BMC instances

J(s0) ∧
n∧

i=0

Φ(si, si+1) ∧G(s0, . . . , sn+1)

is performed as explained in the previous section. The interpretation of results, however, will usually
be different than in the case where ϕ denotes a symbolic test case.

• If ϕ denotes a symbolic test case, it is expected that a solution will be found, and this witness
contains the concrete test inputs (input vectors and time stamps) for to the SUT to be applied
when testing this test case.

• If ϕ denotes an unwanted property of the model, any solution will uncover a model error, and
the witness represents a debugging aid in order to pinpoint the erroneous part of the model.
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Chapter 10

Equivalence Class Testing

Note. The results presented in this chapter have been elaborated in cooperation with the EU FB7
research project COMPASS which is funded under grant agreement no.287829. The work has been
submitted to ICTSS 2013.

10.1 Introduction

Motivation.

Equivalence class testing is a well-known heuristic approach to testing software or systems whose state
spaces, inputs and/or outputs have value ranges of a cardinality inhibiting exhaustive enumeration of
all possible values within a test suite. The heuristic suggests to create equivalence class partitions
structuring the input or output domain into disjoint subsets for which “the behavior of a component
or system is assumed to be the same, based on the specification” [91, p. 228]. If this assumption is
justified it suffices to test “just a few” values from each class, instead of exploring the behavior of
the system under test (SUT) for each possible value. In order to investigate that the SUT respects
the boundaries between different equivalence class partitions boundary values are selected for each
class, so that equivalence class and boundary value testing are typically applied in combination. As
an alternative to deriving equivalence class partitions from the specification, the structure of the SUT
or its model can be analyzed: classes are then defined as sets of data leading to the same execution
paths [27, B.19].

For testing safety-critical systems the justification of the equivalence class partitions selected is
a major challenge. It has to be reasoned why the behaviour of the SUT can really be expected to be
equivalent for all values of a class, and why the number of representatives selected from each class
for the test suite is adequate. While being quite explicit about the code coverage to be achieved when
testing safety-critical systems, standards like [27, 88, 62] do not provide any well-defined acceptance
conditions for equivalence class partitions to be sufficient.

Main Contributions.

In this chapter we present rules for generating input equivalence class partitions, whose justification
is given by the fact that they lead to an exhaustive test suite: under certain hypotheses the generated
classes and the test data selected from them prove conformance between a specification model and its
implementation, if the latter passes all tests of this suite. The algorithm is applicable in a model-based
testing context, provided that the behavioural semantics of the modelling formalism can be expressed
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using Kripke Structures. The equivalence class partitioning strategy is elaborated and proven to be ex-
haustive on Kripke Structures. As an example of a concrete formalism, we illustrate how the strategy
applies to SysML state machine models [77]. To our best knowledge, this is the first formal justifica-
tion of the well-known equivalence class testing principle (see Section 10.6 for a discussion of related
work).

Example 10.1.1. The following example describes a typical system of the class covered by our input
equivalence class partition testing strategy. It will be used throughout the chapter for illustrating the
different concepts and results described in this chapter. The example is taken – in simplified form, in
order to comply with the space limitations of this publication – from the specification of the European
Train Control System ETCS and describes the required behaviour of the ceiling speed monitoring
which protects trains from overspeeding, as specified in [95, 3.13.10.3]. The interface is shown in
Figure 10.1. The I/O variables have the following meaning.

Interface Description
Vest Current speed estimation [km/h]
VMRSP Applicable speed restriction [km/h]

(MRSP = Most Restrictive Speed Profile)
W Warning to train engine driver at driver machine interface (DMI) (1

= displayed, 0 = not displayed)
EB Emergency brake (1 = active, 0 = inactive)

Ceiling Speed 
MonitoringVMRSP

Vest W

EB

Figure 10.1: Interface of the ETCS ceiling speed monitoring function (simplified).

The behaviour of the ceiling speed monitoring function is specified by the UML (or SysML) state
machine shown in Figure 10.2. The function gives a warning to the train engine driver if the currently
applicable speed limit VMRSP is not observed, but the actual estimated speed Vest does not exceed
the limit too far. If the upper threshold for the warning status is violated (this limit is specified by
guard conditions gebi1 or gebi2), the emergency brake is activated. After such an emergency brake
intervention has occurred, the brakes are only released after the train has come to a standstill. 2
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Normal Status Warning Status

Intervention Status (EBI)

entry/ W=0; EB=0; entry/ W = 1;

entry/ EB=1;

[Vest > VMRSP]

[Vest  VMRSP]

[Vest = 0]

[gebi1 _ gebi2 ]

Guard  condition of faulty SUT

gebi2 ⌘ VMRSP  110 ^ Vest > VMRSP + 7.5

gebi1 ⌘ VMRSP > 110 ^ Vest > VMRSP + 15

[gebi1 _ gebi2 ]

gebi1 ⌘ VMRSP > 110 ^ Vest > VMRSP + 20

Figure 10.2: State machine of the ETCS ceiling speed monitoring function.

Overview and Proof Sketch.

In Section 10.2 the basic concepts about Reactive Kripke Structures – a specialisation of general
Kripke Structures which is suitable for application in a reactive systems context – are introduced. In
Section 10.3 it is shown how input equivalence class partitionings for Reactive Kripke Structures are
constructed. In Section 10.4, two test hypotheses are presented, whose validity allows us to prove
that our equivalence class partitioning and test data selection principle leads to an exhaustive test suite
(Theorem 1). While this theorem states that I/O equivalence can be established using a finite input
alphabet only (though the input data types may be infinite), it does not state whether the number of in-
put traces needed is finite. In Section 10.5 we therefore show by means of this theorem, that Reactive
Kripke Structures associated with input equivalence partitionings can be abstracted to deterministic
finite state machines. Then the well-known W-Method can be applied to establish a finite exhaus-
tive test suite proving I/O equivalence between specification model and SUT. Section 10.6 discusses
related work, and we conclude with a discussion of the results obtained and a conjecture about an
extension of the main theorem’s validity in Section 10.7.
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10.2 Reactive Kripke Structures

10.2.1 Notation and Definitions

Let K = (S, S0, R, L,AP ) a Kripke Structure (KS) with state space S, initial states S0 ⊆ S, tran-
sition relation R ⊆ S × S and labelling function L : S → P(AP ), where AP is a set of atomic
propositions. We specialise on state spaces over variable valuations: let V a set of variable symbols
for variables v ∈ V with values in some domain D =

⋃
v∈V Dv. The state space S of K is the set of

all variable valuations s : V → D.1 It is required throughout the chapter that the labelling function
shall be consistent with, and determined by these variable valuations, in the sense that AP contains
propositions with free variable in V and2

∀s ∈ S : L(s) = {p ∈ AP | s(p)}

Since s satisfies exactly the propositions contained in L(s), is satisfies the negation of all propo-
sitions in the complement, that is, ∀p ∈ AP − L(s) : ¬s(p).

K is called a Reactive Kripke Structure (RKS) if it satisfies the following additional properties.

1. V can be partitioned into disjoint sets V = I ∪M ∪O called input variables, (internal) model
variables, and output variables, respectively.3

2. Transitions leave either the input vectors or the internal and output state vectors unchanged, that
is,

∀(s, s′) ∈ R : s′|I = s|I ∨ s′|M∪O = s|M∪O

3. The state space can be partitioned into states from where only input changing transitions are
possible, and those from where only internal and output changing transitions are possible. The
former states are called quiescent, the latter transient.

∃SQ, ST ⊆ S : S = SQ ∪ ST ∧ SQ ∩ ST = ∅ ∧
∀(s, s′) ∈ R : s ∈ SQ ⇒ s′|M∪O = s|M∪O ∧
∀(s, s′) ∈ R : s ∈ ST ⇒ s′|I = s|I

4. All initial states have the same internal and output variable valuations, and all possible inputs
are allowed in initial states4.

∃s : M ∪O → D : S0 = {{~x 7→ ~c} ⊕ s | ~c ∈ DI}

5. The input vector may change without any restrictions.

∀s ∈ SQ, s′ ∈ S : s′M∪O = s|M∪O ⇒ (s, s′) ∈ R
1The state space is always total in the sense that all s : V → D are elements of S. This allows us to assume that

specification models K and implementations K′ operate on the same state space S, possibly with differing subsets of
reachable states.

2We use notation s(p) for the Boolean expression p, where every free variable v ∈ var(p) has been replaced by its
current value s(v) in state s. For example, s(x < y) is true if and only if s(x) < s(y) holds. Observe that this can be
alternatively written as s |= p, or p[s(v)/v | v ∈ V ].

3Frequently we use input vectors ~c to the system, ~c is an element of DI = Dx1 × · · · × Dx|I| , where x1, . . . , x|I|
are the input variables. Changing the valuation of all input variables of a state s0 to ~c = (c1, . . . , c|I|) is written as
s1 = s0 ⊕ {~x 7→ ~c}. State s1 coincides with s0 for all but the the input variables, and s1(xi) = ci, i = 1, . . . , |I|.

4Observe that initial states may be quiescent or transient.
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6. Internal and output state changes are deterministic in the sense that they only depend on the
current state valuation.

∃T : ST → SQ : ∀s ∈ ST , s′ ∈ S : (s, s′) ∈ R⇒ s′ = T (s)

Function T can be extended to the complete state space by defining ∀s ∈ SQ : T (s) = s.

7. Unreachable states s are elements of SQ, so that the transition relation is also defined onR(s, ·),
but only input changes may occur.

The rules above imply that the transition relation of a RKS can be written as R = {(s, s′) | s ∈
SQ ∧ s′|M∪O = s|M∪O} ∪ {(s, T (s)) | s ∈ ST }. Observe that while transient states always have
quiescent ones as post-states (this is stated in rule 7), quiescent states may have both transient and
quiescent ones as post-states.

Example 10.2.1. Consider the UML/SysML state machine described in Example 1. Its behavioural
semantics can be described by a RKS K = (S, S0, R, L,AP ) with variable symbols from V =
I ∪M ∪O, I = {Vest, VMRSP}, M = {`}, and O = {W,EB}. Sets I and O contain the interface vari-
able symbols with domains DVest = DVMRSP = [0, 350] ⊆ R (maximum speed of ETCS trains under
consideration is 350km/h). Symbol ` (“location”) has values in D` = {NS,WS, IS} and its valuation
signifies the current control state ‘Normal Status’, ‘Warning Status’, or ‘Intervention Status’, respec-
tively. The output symbols have values in DW = DEB = B = {0, 1}. The state space S contains all
valuations of these symbols, S = V → D, with D = [0, 350] ∪D`. Setting DI = [0, 350]× [0, 350],
the initial states are elements of S0 = {s0 ∈ S | ∃(c0, c1) ∈ DI : s0 = {Vest 7→ c0, VMRSP 7→ c1, ` 7→
NS,W 7→ 0,EB 7→ 0}}. Fixing the variable order to vector (Vest, VMRSP, `,W,EB), we will from
now on describe states s by their value vector (s(Vest), s(VMRSP), s(`), s(W), s(EB)), so that an initial
state s0 is written as (c0, c1,NS, 0, 0). The transition relation R is specified by the predicate (see [35]
about how to express transition relations as first order predicates)

R((Vest, VMRSP, `,W,EB), (V ′est, V
′

MRSP, `
′,W′,EB′)) ≡∨7

i=0 ϕ((Vest, VMRSP, `,W,EB), (V ′est, V
′

MRSP, `
′,W′,EB′))

ϕ0 ≡ (` = NS ∧ Vest ≤ VMRSP ∧ `′ = NS ∧W′ = W ∧ EB′ = EB)
ϕ1 ≡ (` = NS ∧ Vest > VMRSP ∧ `′ = WS ∧W′ = 1 ∧ EB′ = EB ∧ V ′est = Vest ∧ V ′MRSP = VMRSP)
ϕ2 ≡ (` = NS ∧ (gebi1 ∨ gebi2 ) ∧ `′ = IS ∧W′ = 1 ∧ EB′ = 1 ∧ V ′est = Vest ∧ V ′MRSP = VMRSP)
ϕ3 ≡ (` = WS ∧ Vest > VMRSP ∧ ¬(gebi1 ∨ gebi2 ) ∧ `′ = WS ∧W′ = W ∧ EB′ = EB)
ϕ4 ≡ (` = WS ∧ Vest ≤ VMRSP ∧ `′ = NS ∧W′ = 0 ∧ EB′ = 0 ∧ V ′est = Vest ∧ V ′MRSP = VMRSP)
ϕ5 ≡ (` = WS ∧ (gebi1 ∨ gebi2 ) ∧ `′ = IS ∧W′ = W ∧ EB′ = 1 ∧ V ′est = Vest ∧ V ′MRSP = VMRSP)
ϕ6 ≡ (` = IS ∧ Vest > 0 ∧ `′ = IS ∧W′ = W ∧ EB′ = EB)
ϕ7 ≡ (` = IS ∧ Vest = 0 ∧ `′ = NS ∧W′ = 0 ∧ EB′ = 0 ∧ V ′est = Vest ∧ V ′MRSP = VMRSP)

The quiescent states are characterised by the pre-conditions (“unprimed conjuncts”) in ϕ0, ϕ3, ϕ6, the
transient states by the pre-conditions in ϕ1, ϕ2, ϕ4, ϕ5, ϕ7. Observe that in order to enforce the RKS
rule 6 (transient states are followed by quiescent states), ϕ2 specifies the direct transitions from control
state NS to IS. Initial state s0 = (0, 90,NS, 0, 0), for example, is quiescent; this follows from ϕ0. In
contrast to this, s1 = (95, 90,NS, 0, 0) ∈ S0 is transient (ϕ1 applies). The latter initial state applies
in a situation where the ceiling speed monitoring controller is re-booted while the train is driving
(Vest = 95), and the state is immediately left, since Vest exceeds the allowed speed VMRSP. The atomic
propositions AP and the labelling function L will be discussed in the examples below. 2

10.2.2 Quiescent Reduction

The notion of transient states in RKS is semantically redundant. They only help to facilitate the map-
ping of concrete modelling formalisms (such finite state machines or UML/SysML state machines)
into RKS. The redundancy of transient states is captured in the following definition.
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Definition 6. Given a Reactive Kripke Structure K = (S, S0, R, L) the Kripke structure Q(K) de-
fined by

Q(K) = (Q(S), Q(S0), Q(R), Q(L)), Q(S) = SQ
Q(L) = L|SQ

: SQ → P(AP ), Q(S0) = {T (s0) | s0 ∈ S0}
Q(R) = {(s, s′) | s, s′ ∈ SQ ∧ (R(s, s′) ∨ (∃s′′ ∈ ST : R(s, s′′) ∧ s′ = T (s′′)))}

is called the quiescent reduction of K. 2

The state space of Q(K) consists of quiescent K-states only, and its labelling function is the re-
striction of L to quiescent states. The initial states ofQ(K) consist of the union of the quiescent initial
K-states and the quiescent post-states of transient initial K-states (recall that T maps quiescent states
to themselves and transient states to their quiescent post-states). The transition relation Q(R) relates
quiescent states already related in K, and those pairs of quiescent states that are related indirectly in
K by means of an intermediate transient state.

Example 10.2.2. For the RKS described in Example 1, the quiescent reduction Q(K) has ini-
tial states Q(S0) = {(Vest, VMRSP, `,W,EB) | Vest ≤ VMRSP ∧ ` = NS ∧ W = 0 ∧ EB = 0} ∪
{(Vest, VMRSP, `,W,EB) | Vest > VMRSP ∧ ¬(gebi1 ∨ gebi2) ∧ ` = WS ∧ W = 1 ∧ EB = 0} ∪
{(Vest, VMRSP, `,W,EB) | (gebi1 ∨ gebi2)∧ ` = IS∧W = 1∧EB = 1}. The transition relation is given
by

Q(R)((Vest, VMRSP, `,W,EB), (V ′est, V
′

MRSP, `
′,W′,EB′)) ≡∨7

i=0 ψi((Vest, VMRSP, `,W,EB), (V ′est, V
′

MRSP, `
′,W′,EB′))

ψ0 ≡ (` = NS ∧ V ′est ≤ V ′MRSP ∧ `
′ = NS ∧W′ = 0 ∧ EB′ = 0)

ψ1 ≡ (` = NS ∧ V ′est > V ′MRSP ∧ ¬(g′ebi1
∨ g′ebi2

) ∧ `′ = WS ∧W′ = 1 ∧ EB′ = EB)

ψ2 ≡ (` = NS ∧ (g′ebi1
∨ g′ebi2

) ∧ `′ = IS ∧W′ = 1 ∧ EB′ = 1)

ψ3 ≡ (` = WS ∧ V ′est ≤ V ′MRSP ∧ `
′ = NS ∧W′ = 0 ∧ EB′ = 0)

ψ4 ≡ (` = WS ∧ V ′est > V ′MRSP ∧ ¬(g′ebi1
∨ g′ebi2

) ∧ `′ = WS ∧W′ = 1 ∧ EB′ = EB)

ψ5 ≡ (` = WS ∧ (g′ebi1
∨ g′ebi2

) ∧ `′ = IS ∧W′ = W ∧ EB′ = 1)

ψ6 ≡ (` = IS ∧ V ′est > 0 ∧ `′ = IS ∧W′ = W ∧ EB′ = 1)
ψ7 ≡ (` = IS ∧ V ′est = 0 ∧ `′ = NS ∧W′ = 0 ∧ EB′ = 0)

2

10.2.3 Traces

Traces of K are finite sequences of states related by R, including the empty sequence ε.

Traces(K) = {ε} ∪ {s0 . . . sn ∈ S∗ | n ∈ N0 ∧ s0 ∈ S0 ∧
n−1∧

i=0

R(si, si+1)}

The last state of a finite sequence of states is denoted by last(s0 . . . sn) = sn, and tail(s0 . . . sn) =
(s1 . . . sn), tail(s0) = ε. Given trace s0 . . . sn we define its restriction to symbols from X ⊆ V by
(s0 . . . sn)|X = (s0|X) . . . (sn|X).

10.2.4 Input Traces

Given a RKS K = (S, S0, R, L), we consider the effect of input traces on states in K’s quiescent
reduction Q(K): an input trace ι = ~c0.~c1 . . . is a finite sequence of input vectors ~ci ∈ DI , that is,
ι ∈ (DI)

∗. The application of an input trace ι to a quiescent state s ∈ Q(S) is written as s/ι and
yields a trace of Q(K) which is recursively defined by s/ε = s, s/(~c0.ι) = s.(T (s⊕ {~x 7→ ~c0})/ι).

As in the definitions above, T denotes the function mapping quiescent K-states to themselves
and transient ones to their quiescent post-states. Obviously each pair of consecutive states in trace
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s/ι is related by transition relation Q(R). We will be frequently interested in the last element of an
input trace application to a state; therefore the abbreviation s//ι = last(s/ι) is used. Since RKS are
deterministic with respect to their reactions on input changes, s//ι is uniquely determined.

10.2.5 I/O Equivalence

Model-based testing always investigates some notion of I/O conformance: stimulating the SUT with
an input trace ι, the observable behaviour should be consistent with the behaviour expected for ι
according to the model. The following definitions specify aspects of I/O equivalence, as they are
relevant in the context of Reactive Kripke Structures.

Definition 7. Given the quiescent reduction Q(K) of some RKS K, and quiescent states s0, s1 ∈
Q(S).

1. If (s0/ι)|O = (s1/ι)|O holds for all input traces ι, s0 and s1 are called I/O equivalent, written
as s0 ∼ s1, otherwise s0 and s1 are called I/O distinguishable.

2. If (s0/ι)|O = (s1/ι)|O for some input trace ι, s0 and s1 are called ι-equivalent, written as
s0

ι∼ s1, otherwise s0 and s1 are called ι-distinguishable.

Definition 8. Two RKS K,K ′ over the same variable symbols V are called I/O equivalent (written
K ∼ K ′) if their quiescent reductions are equivalent in the sense that ∀(s0, s

′
0) ∈ Q(S0) × Q(S′0) :

(s0|I = s′0|I ⇒ s0 ∼ s′0).

10.3 Input Equivalence Class Partitionings Over Reactive Kripke Struc-
tures With Finite Outputs

In the remainder of this chapter we study the special case where our specification models K and
implementations K ′ only have output and internal variables with finite domains. The term “finite” is
to be interpreted here in the sense that these values can be enumerated with reasonable effort. This
contrasts with the domains of input variables, which we allow to have infinite range (such as real
values) or to have “very large” finite cardinality (such as floating point or large integer types), where
an enumeration would be impossible, due to time and memory restrictions. As a consequence, it is
possible to further restrict the sets AP of atomic propositions under consideration. Since all possible
values of internal states and output variables can be explicitly enumerated, AP can be structured into
disjoint sets

AP = API ∪APM ∪APO
API ⊆ {p | p is atomic and var(p) ⊆ I}
APM = {m = α |m ∈M ∧ α ∈ Dm}
APO = {y = β | y ∈ O ∧ β ∈ Dy}

Example 10.3.1. Consider a SysML state machine transition

C0
[x<m+y]−→ C1

with x ∈ I,m ∈ M,y ∈ O, where Dx = R, Dy = {0, 1}, Dm = {10, 11}. When transforming
this machine into a RKS, the atomic propositions AP can be strictly separated according to their free
variables being from I , M , or O, respectively. For example, AP = {` = C0,m = 10, y = 0, x <
10, x < 11, x < 12}. 2
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Definition 9. Given RKS K = (S, S0, R, L,AP ) with finite outputs and internal state, and AP
partitioned into AP = API ∪APM ∪APO as described above. If

∀s0, s1 ∈ S : (L(s0) = L(s1)⇒ L(T (s0)) = L(T (s1)))

then AP is called an input equivalence class partitioning (IECP) of K, and its input classes are
specified by

I =
{
{ ~c ∈ DI |

∧

p∈L(s)∩API

p[~c/~x] ∧
∧

p∈API−L(s)

¬p[~c/~x] } | s ∈ S
}

In presence of an IECP AP , all input changes {~x 7→ ~c}, {~x 7→ ~d} to a state s satisfying the same
input-related atomic propositions, that is, L(s⊕ {~x 7→ ~c}) ∩API = L(s⊕ {~x 7→ ~d}) ∩API , lead to
post states satisfying the same atomic propositions. In particular, these post states all have the same
internal state and the same outputs. Recall that T maps quiescent states to themselves, so the IECP
property is only non-trivial for the transient states of an RKS.
Example 10.3.2. For the ceiling speed monitoring function, whose RKS K has been constructed in
Example 1, atomic propositions

AP = {Vest = 0, Vest > VMRSP, VMRSP > 110, Vest > VMRSP + 7.5, Vest > VMRSP + 15,
` = NS, ` = WS, ` = IS,W,EB}

introduce an IECP forK. Consider, for example, the states s0 labelled byL(s0) = {Vest > VMRSP, ` =
NS}. Each of these s0 is transient and has a post state s1 satisfying V ′est = Vest∧V ′MRSP = VMRSP∧`′ =
WS ∧W. As a consequence, all of these post-states are labelled by L(s1) = {Vest > VMRSP, ` =
WS,W}. 2

The following Lemma shows that input traces applied to the same state and passing through the
same sequences of input equivalence classes produce identical outputs.

Lemma 1. Given RKS K = (S, S0, R, L,AP ) with finite outputs and internal state as described
above, so that AP is an IECP for K with input classes I. Let ι = ~c1 . . .~ck, τ = ~d1 . . . ~dk, ~ci, ~di ∈
DI , i = 1, . . . , k, such that

∀i = 1, . . . , k,∃Xi ∈ I : {~ci, ~di} ⊆ Xi

Then ∀s ∈ SQ : (s/ι)|M∪O = (s/τ)|M∪O.

Proof. LetXi ∈ I satisfying {~ci, ~di} ⊆ Xi, ∀i = 1, . . . , k. Let s ∈ SQ. Denote s/ι = s0.s1 . . . sk, s/τ =
r0.r1 . . . rk, where s = s0 = r0. We prove by induction over i = 0, . . . , k that si|M∪O = ri|M∪O. For
i = 0 it is trivial, since s = s0 = r0. Suppose that the induction hypothesis holds for i < k, si|M∪O =
ri|M∪O. Since si⊕{~x 7→ ~ci+1}|M∪O = ri⊕{~x 7→ ~di+1}|M∪O and, according to the assumptions of
the lemma, {~ci+1, ~di+1} ⊆ Xi+1, we conclude that L(si ⊕ {~x 7→ ~ci+1}) = L(ri ⊕ {~x 7→ ~di+1}).The
IECP property of AP now implies that also L(T (si ⊕ {~x 7→ ~ci+1})) = L(T (ri ⊕ {~x 7→ ~di+1})),
and by definition T (si ⊕ {~x 7→ ~ci+1}) = si+1, T (ri ⊕ {~x 7→ ~di+1}) = ri+1, therefore si+1|M∪O =
ri+1|M∪O. This proves the lemma.

Lemma 2. Given RKS K with finite outputs and internal state as described above, and AP an IECP.
Let p1, . . . , pn a set of fresh atomic propositions not contained inAP , with var(pi) ⊆ I, i = 1, . . . , n.
Then AP2 = AP ∪ {p1, . . . , pn} is another IECP, called the refinement of AP . The input classes of
AP2, constructed according to Definition 9, are denoted by I2.

Observe that IECP refinement according to Lemma 2 introduces new propositions in API only,
while APM and APO remain unchanged.
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10.4 Test Hypotheses and Proof of Exhaustiveness

The input equivalence class testing strategy to be introduced in this section yield exhaustive tests,
provided that the following two test hypotheses are met.

(TH1) Testability Hypothesis. There exists a RKS K ′ = (S, S′0, R
′, L′, AP ′) with finite internal

states and output as introduced in Section 10.3 describing the true behaviour of the SUT, and its state
space S consists of valuation functions s : V → D for variables from V as specified for the reference
model K = (S, S0, R, L,AP ).

(TH2) Existence of Refined Equivalence Class Partitioning. For specification modelK = (S, S0, R, L,AP )
and SUT K ′ = (S, S′0, R

′, L′, AP ′), both atomic proposition sets AP,AP ′ are IECP of K and K ′

with input classes I, I ′, respectively, and APM = AP ′M , APO = AP ′O. Moreover, there exists an
input partition refinement AP2 = AP2I ∪APM ∪APO, in the sense of Lemma 2, such that

∀X ∈ I, X ′ ∈ I ′ : ∃X2 ∈ I2 : (X ∩X ′ 6= ∅⇒ X2 ⊆ X ∩X ′)

Validity of (TH2) induces a finite input alphabet toK andK ′ which will be shown below to suffice
for uncovering any violation of I/O equivalence between K and K ′.

Definition 10. Given RKS K,K ′ with finite internal state and outputs, and input equivalence class
partitionings AP,AP ′ and AP2 according to test hypothesis (TH2). Let AI denote a finite subset of
input vectors ~c ∈ DI satisfying ∀X ∈ I2 : ∃~c ∈ AI : ~c ∈ X . Then AI is called an input alphabet for
equivalence class partition testing of K ′ against K. For any nonnegative integer k, AIk is the set of
all AI -sequences of length less than or equal to k (including the empty trace ε).

Example 10.4.1. Let K the RKS of the ceiling speed monitor model constructed in Example 1,
with IECP AP as given in Example 2. Now suppose that the SUT implementing the monitor model
has an error, as indicated in Figure 10.2: it uses a faulty guard condition gebi1 ∨ gebi1 instead of
gebi1 ∨ gebi1 . Its IECP (which, of course, would be unknown in a black box test) is AP ′ = {Vest =
0, Vest > VMRSP, VMRSP > 110, Vest > VMRSP + 7.5, Vest > VMRSP + 20, ` = NS, ` = WS, ` =
IS,W,EB}. The IECP refinement of AP , AP2 = {Vest = 0, Vest > VMRSP, VMRSP > 110, Vest >
VMRSP + 7.5, Vest > VMRSP + 15, Vest > VMRSP + 18.75, Vest > VMRSP + 22.5, ` = NS, ` =
WS, ` = IS,W,EB} fulfils test hypothesis (TH2). Consider, for example the intersection of K
input class X = {(Vest, VMRSP) | VMRSP > 110 ∧ Vest > VMRSP + 15} and the K ′ input class
X ′ = {(Vest, VMRSP) | VMRSP > 110 ∧ Vest > VMRSP + 7.5 ∧ ¬(Vest > VMRSP + 20)}. Then the
input class X2 = {(Vest, VMRSP) | VMRSP > 110∧ Vest > VMRSP + 15∧¬(Vest > VMRSP + 18.75)} of
the refined IECP AP2 is contained in the intersection X ∩X ′. Indeed, any input from X2 applied to
the SUT in control state WS would reveal the erroneous guard condition, because K transits into IS,
while K ′ remains in WS.

For practical application (since the IECP of the SUT is unknown), the input space DI is sys-
tematically partitioned by intersecting the input-related propositions from AP with interval vectors,
partitioning DI into |I|-dimensional cubes. 2

Theorem 1. Given RKS K = (S, S0, R, L,AP ), K ′ = (S, S′0, R
′, L′, AP ′), such that AP,AP ′ are

IECP of K and K ′ with input classes I, I ′ , respectively, and AP2 is a refinement of AP according to
test hypothesis (TH2). I2 contains the input classes associated with AP2. Let AI an input alphabet
derived from I2 according to Definition 10. Then for any quiescent states s ∈ SQ, s′ ∈ S′Q and any
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input trace ι, there exists an input trace τ ∈ AI∗ with the same length, such that s/ι|O = s/τ |O and
s′/ι|O = s′/τ |O. Hence, s ι∼ s′ if and only if s τ∼ s′.

Proof. If ι is empty, there is nothing to prove, since ε ∈ AI . Suppose therefore, that ι = ~c1 . . .~ck
with k ≥ 1 and let s/ι = s0.s1 . . . sk, and s′/ι = s′0.s

′
1 . . . s

′
k, where s0 = s, s′0 = s′.

Consider the associated sequences of input classes X1 . . . Xk ∈ I and X ′1 . . . X
′
k ∈ I ′, where

~ci ∈ Xi and ~ci ∈ X ′i, for all i = 1, . . . , k. Since ~ci ∈ Xi ∩X ′i 6= ∅, i = 1, . . . , k, (TH2) implies the
existence of X21, . . . , X2k ∈ I2 such that

X2i ⊆ Xi ∩X ′i, i = 1, . . . , k (∗)

According to Definition 10, we can select ~d1, . . . , ~dk ∈ AI , such that ~di ∈ X2i for all i = 1, . . . , k.
(*) implies ~di ∈ Xi ∩ X ′i i = 1, . . . , k. Therefore, setting τ = ~d1 . . . ~dk, Lemma 1 may be applied
to conclude that (s/ι)|O = (s/τ)|O and (s′/ι)|O = (s′/τ)|O. Therefore s ι∼ s′ ⇔ s

τ∼ s′, and this
completes the proof.

10.5 Test Strategy

Given specification model K = (S, S0, R, L,AP ) and SUT K ′ = (S, S′0, R
′, L′, AP ′), and the

refined IECP AP2 with input classes I2 according to test hypothesis (TH2). LetAI the input alphabet
constructed from I2 as specified in Definition 10. Then AP , AI and each s0 ∈ Q(S0) induce a
deterministic finite state machine (DFSM) abstraction M(K, s0) = (Q, q0,AI , DO, δ, ω) of K with
state space Q = {[s] | s ∈ SQ}, initial state q0 = [s0], and input alphabet AI , where [s] = {r ∈
SQ | r ∼ s}. Let O the set of output variables of K. The output alphabet of M(K, s0) is defined by
DO = Dy1 × . . .×Dy|O| . The state transition function δ : Q×AI → Q of M(K, s0) is defined by

δ(q,~c) = q1 if and only if ∃s ∈ SQ : q = [s] ∧ q1 = [s//~c]

The output function ω : Q×AI → DO of M(K, s0) is defined by

ω(q,~c) = ~e if and only if ∃s ∈ SQ : q = [s] ∧ (s//~c)|O = {~y 7→ ~e}

We extend the domain of the state transition function to input traces, δ : Q × A∗I → Q∗ by setting
recursively δ(q, ε) = q, δ(q,~c.ι) = q.δ(δ(q,~c), ι). The output function can be extended to ω :
Q × A∗I → D∗O by setting ω(q, ι) = ~e0 . . . ~ek, if and only if δ(q, ι) = [s0] . . . [sk] and si|O = {~y 7→
~ei}, i = 0, . . . , k.

Lemma 3. The DFSMs M(K, s0) = (Q, q0,AI , DO, δ, ω) introduced above are well-defined.

Proof. Let q = [s] and [r] = [s] for some s, r ∈ SQ. Then r ∼ s, and therefore s//~c ∼ r//~c, and this
shows that δ(q,~c) is well-defined. Since all members of [s//~c] coincide on O, this also shows that ω
is well-defined.

By construction, the DFSMs are minimal, because each pair of different states [s0] 6= [s1] can be
distinguished by an input trace resulting in different outputs when applied to [s0] or [s1], respectively.
Since AP is an IECP, all K-states s0, s1 carrying the same label L(s0) = L(s1) are I/O-equivalent,
so {s1 | L(s1) = L(s)} ⊆ [s] for all quiescent states of K. It may be the case, however, that
some states carrying different labels are still I/O-equivalent, that is, L(s0) 6= L(s1), but {s | L(s) =
L(s0)} ∪ {s | L(s) = L(s1)} ⊆ [s0] = [s1]. In analogy to M(K, s0), DFSMs M(K ′, s′0) can be
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constructed from K ′, AP ′, s0 ∈ Q(S′0), and the same input alphabet AI as has been used for the
DFSMs M(K, s0).

We write M(K, s0) ∼ M(K ′, s′0) and q0 ∼ q′0, if and only if ω(q0, ι) = ω′(q′0, ι) for every
ι ∈ A∗I . Note that this differs from I/O equivalence between K and K ′, where s0 ∼ s′0 if and only
if (s0/ι)|O = (s′0/ι)O for every ι ∈ D∗I . The following theorem states that I/O equivalence between
specification model K and an implementation K ′ can be established by investigating the equivalence
of their associated DFSM, that is, using ι ∈ A∗I only.

Theorem 2. With the notation above, the following statements are equivalent.

• K and K ′ are I/O equivalent, K ∼ K ′.

• ∀s0 ∈ Q(S0), s′0 ∈ Q(S′0) : (s0|I = s′0|I ⇒M(K, s0) ∼M(K ′, s′0)).

Proof. Obviously, M(K, s0) ∼ M(K ′, s′0) ⇔ q0 ∼ q′0 ⇔ (∀τ ∈ A∗I : s0
τ∼ s′0). By Theorem 1, we

have (∀ι ∈ D∗I : s0
ι∼ s′0)⇔ (∀τ ∈ A∗I : s0

τ∼ s′0). Hence s0 ∼ s′0 ⇔M(K, s0) ∼M(K ′, s′0). Now
the assertion follows directly from the definition of K ∼ K ′ (Definition 8).

Definition 11. With the terms introduced above, a transition cover ofM(K, s0) is a set of input traces
ι ∈ A∗I satisfying the following condition: for any reachable state q ∈ Q and any ~c ∈ AI , there is an
input trace ι ∈ TC such that δ(q0, ι) = q and ι.~c ∈ TC.

Definition 12. With the terms introduced above and minimal M(K, s0), define a characterisation set
W of M(K, s0) as a set of traces ι ∈ A∗I , such that for all q1, q2 ∈ Q, there exists an input trace
ι ∈W such that ω(q1, ι) 6= ω(q2, ι).

On DFSM M(K, s0) we can apply Chow’s W-method [31] to conclude that the following finite
test suite is exhaustive for testing I/O equivalence between K and K ′.

Theorem 3. With the terms introduced above, and M(K, s0) and M(K ′, s′0) minimal for any s0 ∈
Q(S0), s′0 ∈ Q(S′0) with s0|I = s′0|I , let TC(s0),W (s0) the transition cover and characterisation
set of M(K, s0) as introduced above. Assume that M(K, s0) has n states and that M(K ′, s′0) has at
most m states. Let m0 = max(n,m). Then

W(K) =
⋃

[s0]∈Q(S0)/∼

(
TC(s0).Am0−n

I .W (s0)
)

is an exhaustive test suite for testing SUT K ′ against specification model K.

Proof. Applying Chow’s W-method [31] to M(K, s0) and M(K ′, s′0), M(K, s0) and M(K ′, s′0) are
I/O equivalent if and only if they are TC(s0).Am0−n

I .W (s0) equivalent5. Hence the assertion follows
directly from Theorem 2.

10.5.1 Complexity Considerations

Definition 10 determines the size of the input alphabetAI as the number k2 = |AI | of input classes in
the refined equivalence partitioning AP2 according to test hypothesis (TH2). The number n of states
in the DFSM associated with K is less or equal to the number n of labels L(s), s ∈ SQ (we get n < n

5Observe that in [31], the author uses a slightly different notation, where Ai
I denotes the set of input traces with length

i, while we use this term to denote the traces of length less or equal i.

89



if different labels L(s0) 6= L(s1) are associated with I/O equivalent states). Let m0 = max(n,m),
where n is the number of states in M(K, s0), and m the number of states in M(K ′, s′0). Then
according to [31, 96], the number of input traces contained in TC(s0).Am0−n

I .W (s0) is bounded
by n2 · km0−n+1

2 . We have to execute several test suites of this type, their number is equal to k =
|Q(S0)/∼|, the number of equivalence classes derived from initial states of the quiescent reduction of
K. In the worst case, all classes of K can be reached from some transient initial state, so k ≤ n. This
results in an upper bound of k · n2 · km0−n+1

2 ≤ n3 · km0−n+1
2 test cases (that is, input traces) to be

performed.

10.6 Related Work

Notable examples for exhaustive test methods have been given in [31, 92, 78, 94]. There exists a
large variety of research results related to testing against hierarchic state machines similar to Harel’s
Statecharts or to UML state machines. We mention [46] as one representative and refer to the refer-
ences given there. These contributions, however, mainly deal with the state machine hierarchy and do
not tackle the problem of attributes from large input domains, which is the main motivation for the
results presented here. In [24, pp. 205] large data domains in the context of state machine testing are
addressed, but no formal justification of the heuristics presented there are given.

In model-based testing, the idea to use data abstraction for the purpose of equivalence class def-
inition has been originally introduced in [49], where the classes are denoted as hyperstates, and the
concept is applied to testing against abstract state machine models. Our results presented here surpass
the findings described in [49] in the following ways: (1) while the authors of [49] introduce the equiv-
alence class partitioning technique for abstract state machines only, our approach extracts partitions
from the models’ semantic representation. Therefore an exhaustive equivalence class testing strategy
can be elaborated for any formalism whose semantics can be expressed by Kripke Structures. (2) The
authors sketch for white box tests only how an exhaustive test suite could be created [49, Section 4]:
the transition cover approach discussed there is only applicable for SUT where the internal state (re-
spectively, its abstraction) can be monitored during test execution. (3) The authors only consider
finite input sets whose values have been fixed a priori [49, Section 2], whereas our approach allows
for inputs from arbitrary domains.

The approach to define equivalence classes as vectors of propositions over state variables intro-
duces a natural abstraction of the state space. In the field of model checking, this data abstraction has
been extensively investigated, see [35]. In particular, the concept of counter example guided abstrac-
tion refinement (CEGAR) introduces strategies for the gradual refinement of equivalence classes [33].
This has inspired the partition refinement introduced in this chapter for the ensuring compliance with
the fault hypotheses.

The original application for CEGAR paradigm as advocated in [32, 33] starts with a coarse ab-
straction of the state space and tries to prove the validity of an ACTL formula. If a counter example
exists, the abstraction is refined in order to investigate whether the violation of the assertion is just a
false alarm only occurring in the original abstraction. In contrast to this original application of the
CEGAR principle, it has been suggested in [20] to apply refinements in situations where it cannot be
decided whether certain atomic propositions will evaluate to true or false in a given abstracted state.
This idea can be applied in the context of the present chapter, when transforming a concrete model
(for example, a SysML state machine) into a RKS. Our approach, however, is distinguished from [20]
in the following ways: (1) while the application domain in [20] is property checking of concrete PLC
code, we focus on black-box equivalence testing for a wider range of reactive control systems where

90



the SUT code is not available, but a specification model exists instead. (2) In [20] state spaces are
abstracted using conservative approximations, so that no potential error states can be missed. In con-
trast to this, we deliberately use under approximations for which we are able to show that they suffice
to uncover deviations of the SUT from the model, as long as certain fault hypotheses are fulfilled:
these under approximations correspond to the input equivalence classes to be constructed for refined
partitionings as specified in test hypothesis (TH2). Our refinement concept can also be applied for
creating decision coverage of test models in general [11].

10.7 Conclusion and Future Work

In this chapter, a novel exhaustive test strategy for input equivalence class testing has been established.
The main result (Theorem 1) shows that even in presence of infinite input data domains, a finite input
alphabet can be identified, so that for every trace performed by specification model or implementation,
there exists a trace using inputs from this finite alphabet only, but producing the same outputs as the
original one. This result holds for arbitrary modelling formalisms, whose semantics may be expressed
by Reactive Kripke Structures with input domains that may be infinite (or too large to be explicitly
enumerated), but with internal states and outputs having a sufficiently small range to be enumerated in
an explicit way. With the main theorem at hand, the well-known W-Method can be applied to identify
a finite and at the same time exhaustive test suite. Using an abstraction of the Kripke Structures under
consideration to deterministic finite state machines, we have proven that this method is applicable.

Further research will focus on the generalisation of the test strategy to Reactive Kripke Structures
with arbitrary data domains for internal states and outputs. According to our conjecture, a result
similar to Theorem 1 should hold in the general case. The equivalence classes under consideration,
however, will no longer refer to system inputs only, but will be characterised by more general atomic
propositions with inputs, internal state and outputs as free variables.
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Chapter 11

Stochastic Model Checking

Note. The contents of this chapter has been published in Jan Peleska and Oliver Schulz: Reliability
Analysis of Safety-Related Communication Architectures In E. Schoitsch (Ed.): SAFECOMP 2010.
LNCS 6351, pp. 1-14, 2010 Reliability Analysis of Safety-Related Communication Architectures.

11.1 Introduction

11.1.1 Background: Safety Versus Reliability in Communicating Railway Control
Systems

In safety related communication domains there are two important characteristics of communication
architectures: Safety and reliability. In the railway domain the standard EN 50159-2 defines a basic
design of communication architectures for safety related equipment. In general the standard splits
the architecture into two parts: A safety layer, which must fulfil a specific safety integrity level (SIL)
and a “grey channel” without any safety responsibility (see Fig. 11.1 and 11.2). Safety layers have
to detect six different types of message errors to grant functional safety. The standard EN 50159-2
defines a defence matrix against these threats (Table 11.1, [28, 29]). The safety reaction on such errors
must be a safe state, which usually stops the communication service until the system is reinitialised
or reset by an operator. Therefore a safe communication reduces the fault tolerance against arbitrary
transmission errors and lowers the reliability of the communication architecture. To improve the fault
tolerance against message errors it is necessary to use a reliable message transmission service (e.g.
ARQ, Automatic Repeat Request) before the safety check is executed. A reliable transmission service
can be included in the safety layer, in the upper protocol layer of the grey channel or in both layers
(Fig. 11.2).

A “naive” combination of fault-tolerance mechanisms in the grey channel and safety layers will
not necessarily increase the overall fault-tolerance: if, for example, lost messages in the grey channel
lead to re-transmissions after timeouts, the message eventually passed to the receiving safety layer
may be out-dated and therefore has to be discarded. As a consequence, it is necessary to perform
analyses whether – given a trustworthy estimate for the occurrence of basic transmission faults as
classified in Table 11.1 – the fault-tolerance mechanisms deployed in the grey channel will really
increase the overall reliability of the distributed safety-critical control system.
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Figure 11.1: Structure of safety-related communication architecture (from [29]). The term “Non
Safety Process (optional)” in the Safety Related Equipment block indicates that also processes without
safety-relevance can be deployed in the safety-critical equipment.

Table 11.1: Threats
Defences Sequence Time Time Src. and Feed-back Identification Safety

Threat number stamp out dst. ID message procedure code
Repetition x x
Deletion x
Insertion x x x x
Resequence x x
Corruption x
Delay x x

11.1.2 Objectives and Contributions

In this paper we present a novel method for reliability analysis of safety-related communication ar-
chitectures structured into safety layers and grey channels as described in the previous section. In this
context reliability is defined as the probability that the overall system will perform its (deterministic)
safety-related services in a given operational time period [t1, t2] without interruption and resulting
transition into stable safe state, though transmission faults may occur in the grey channel with a given
probability (see IEC 60050(191) [61] for the general definition).

Our analysis approach uses a domain-specific modelling language (DSL) developed by the au-
thors. This DSL facilitates modelling communication architectures and protocols, together with the
fault hypotheses concerning the probabilistic occurrence of the basic faults listed in Table 11.1. These
communication models are used to create mutants, that is, derived models showing erroneous be-
haviour resulting from one or more basic faults occurring in compliance with the fault hypotheses at
various places in the communication architecture. For each mutant the probability of its occurrence
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Figure 11.2: General Modelling Architecture

can be calculated. Since the mutants themselves show deterministic (erroneous) behaviour, conven-
tional non-probabilistic model checkers can be used to analyse whether the safety-related services
will still operate properly in presence of the behaviour specified by the mutant. Time constraints play
an important rôle in the behaviour of the system layers involved; therefore we have chosen Timed
Automata [7] for modelling the mutant behaviour and use the UPPAAL tool to perform the associated
analyses. UPPAAL verifies or falsifies TCTL (Timed Computation Tree Logic) statements likeAGφ1

or EFφ2 on a given UPPAAL model [17]. The verification goal AG(SAFE∧¬φ) is to show that the
safety layer will always satisfy its safety-specification SAFE and never transit into stable safe state φ,
despite of the faults occurring in the grey channel according to the mutant model under investigation.
If a combination of faults on the grey channel leads to a violation of AGSAFE the design has to
be changed in any case, since a design-intrinsic safety violation that can be provoked by erroneous
grey channel behaviour is not to be tolerated, regardless of the probability of its occurrence. If all
mutants satisfy AGSAFE, they are classified by their occurrence probability, and according to their
satisfaction or violation of AG(¬φ). Then the resulting reliability of the overall system is calculated
as the probability that only correct behaviour or mutants satisfying AG(¬φ) occur during the given
operational time period.

Our modelling approach requires transaction-oriented processing of safety-related communica-
tion functions: it is assumed that each activity consists of a bounded number of communication and
processing steps, such that (1) the success or failure of the activity can be clearly determined after
this sequence, and, (2) the success of the actual transaction is stochastically independent on the suc-
cess of preceding actions. In the context of safety-related communication architectures this restriction
is not a severe one: applications usually proceed according to different protocol phases like system
setup, connection request, transmission of one application-specific datagram, and going through each
of these phases corresponds to processing transactions of a specific type T`, ` = 1, . . . , q. A minor
limitation is discussed in Section 11.5.

We have developed an integrated tool chain starting with the modelling phase supported by the
MetaEdit+ meta case tool [66] which was also used to design the DSL. A model-to-text generator

1“Always globally φ”: in every computation possible according to the model, and in every state of such a computation,
predicate φ holds.

2“Exists finally φ”: there exists a model computation where finally a state satisfying φ is reached.
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creates an internal representation of the DSL model. A mutation generator creates the mutants from
this model and calculates their occurrence probability. Each mutant is expressed by an XML text
representation conforming to the internal input format for UPPAAL models.

Our main contributions consist in the design of the DSL, the automated generation of the mutants
and the calculation of their occurrence probability. Furthermore, our approach avoids the occurrence
of state space explosions arising when all possible faulty behaviours are simultaneously considered in
one probabilistic model (see further comments in Section 11.1.3). Finally, the different mutants can
be analysed independently; therefore our analysis tool distributes the UPPAAL model checking tasks
over several computers and CPU cores, so that model checking of different mutants can be performed
simultaneously.

11.1.3 Related Work

Model-checking has been widely used for the verification of communication protocols and also for
checking safety-properties of systems, see [40, 1, 89] and the references given there for related work
in the railway domain. Reliability aspects have mostly been approached by means of probabilistic
model checking, see, for example, [71, 39].

Our solution differs from the latter in that we deliberately do not use probabilistic model checking
for these reliability aspects: extensive experiments performed by our group with the PRISM tool [39]
showed that (1) the lack of real-time modelling capabilities enforces abstractions which either over-
simplify the real communication behaviour or leads to unnecessarily complex constructions involving
clock tick counters or similar devices, and (2) the incorporation of all possible faulty behaviours in
one model lead to unacceptable checking times and even state explosions for the more sophisticated
models. Indeed, since the probability that all possible faults occur while processing one transaction is
so low that it can be neglected anyway, such a model would contain many computations of no practi-
cal relevance. Finally, (3) tools like PRISM only handle numeric probability values, but do not allow
to investigate symbolic ones. As a consequence, parameter-dependent analyses require to re-run the
time-consuming model checks for every parameter value to be considered.

Our approach tackles the combinatorial problem by checking many models instead of a single
one and profit from the smaller size of each model: the complexity of evaluating one (probabilistic)
model incorporating all possible faults is considerably higher than checking many simpler models,
in particular, if the simpler models can be checked in parallel. Additionally, we calculate algebraic
representations of occurrence probabilities. As a consequence, parameter-dependent analyses can be
made by just inserting concrete probability values into the parameters of the formula.

11.1.4 Overview

In Section 11.2 we sketch the work flow supporting reliability analysis and the tool components in-
volved. Section 11.3 introduces the DSL CAMoLa, our description formalism for communication
architectures. In Section 11.4 the principles of mutation generation and the reliability calculation
based on mutant evaluation are described. Section 11.5 contains a discussion of results and prospects
for future work.

11.2 Workflow and Tool Chain

The reliability analysis workflow starts with modelling a communication architecture in the domain-
specific Communication Architecture Modelling Language (CAMoLa), using the informal commu-
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nication architecture specification with associated protocol descriptions as input (Fig. 11.3). Next,
CAMoLa’s model-to-text generator transforms the CAMoLa model into an UPPAAL model, enriched
with syntactic markers for the so-called behaviour switches which are part of the CAMoLa formalism
and used to model possible deviations from normal behaviour (see Section 11.3 below). Now the
mutation generator tool inserts behaviour-vectors (Section 11.3) into the UPPAAL model to create
mutations with different message transmission behaviour. Intuitively speaking, each vector specifies
which deviations from normal behaviour are applied to message sequences passing at specific loca-
tions in the model, and each model location where faulty behaviour is anticipated is associated with
such a vector. The mutation generator records the algebraic formula for each mutation’s occurrence
probability in a table. Each formula is an arithmetic expression over the occurrence probability pa-
rameters associated with each fault type (see Table 11.1) possibly occurring in some part of the model
when processing a message. Then the UPPAAL tool is activated to verify the reliability property on
the mutation; this process is parallelised over several CPU cores and computers to increase perfor-
mance. For each mutant, it is recorded in the table whether it shows reliable behaviour or leads to a
transition into stable safe state.

Formal CAMoLa 

Model

Mutant m1

Informal 

Architecture 

Specification

Metaedit+

CAMoLa

UPPAAL Model

Mutation Generator

UPPAAL Verifier

UPPAAL Mutant 

Model n

Safety

A[] SAFE

Stable Safe State

A[] ¬φ

Mutant m2

...

p1

p1*p2

...

YES

NO

...

Probability of 

Occurrence

A[] ¬φ 

holds
Mutation

Model-to-Text-

Generator

Figure 11.3: Workflow of the presented Framework.
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11.3 The Communication Architecture Modelling Language CAMoLa

CAMoLa was designed for modelling communication architectures and associated protocol behaviours.
Each model is derived from the informal specification of the architecture and consists of synchronised
processes representing protocol components, transmission channels or additional components sim-
ulating environment behaviour or acting as observers in the verification process. CAMoLa and its
model-to-text generator were designed with the tool Metaedit+ [72], which is a meta-modelling and
modelling-workbench [66]. The DSL supports two hierarchical views on communication architec-
tures: A view on all components with their interactions (Fig. 11.4) and a process view on each
component behaviour in timed automata notation (Fig. 11.5).

CAMoLa extends the usual timed automata notation by the notion of behaviour-switches bs, rep-
resenting controlled normal and exceptional behaviour transitions between locations (see Fig. 11.5).
Each possible controlled transition is identified by a marker from set obs = {0, . . . , n, stop}. The
transition connected to one distinguished switch position (position 1 in Fig. 11.5) is associated with
normal behaviour at this model location, so the error-free timed automata model can be extracted from
the CAMoLa model by deleting at every behaviour switch all outgoing transitions but the one associ-
ated with normal behaviour. Each other switch position gives rise to a type of mutated behaviour.

In order to reflect the possibility of different types of transient errors occurring at a specific model
location, mutant models are not simply generated from the CAMoLa model by fixing switch positions,
but by associating each behaviour switch with behaviour-vectors vd: if obs = {0, . . . , n, stop}, then
vd ∈ {0, . . . , n}d, and it specifies that the first d messages m1, . . . ,md passing along the model
location controlled by bs trigger transitions vd(1), . . . , vd(d) ∈ {0, . . . , n}, respectively (Fig. 11.6).

The semantics of this construction is defined by translating the CAMoLa process containing the
pair bs, vd into an ordinary timed automaton utilising an additional auxiliary variable j counting the
number of messages passing along the behaviour switch, that is, the number of outgoing transitions
of bs which have been triggered so far, and an auxiliary location lstop: suppose that bs is located at
source location l and that the switch controls outgoing transitions with identifiers 0, . . . , n, leading to
target locations l0, . . . , ln. Then the associated timed automaton has outgoing transitions

l
j<d∧vd(j)=0/j:=j+1;−−−−−−−−−−−−−−→ l0

l
j<d∧vd(j)=1/j:=j+1;−−−−−−−−−−−−−−→ l1

...

l
j<d∧vd(j)=n/j:=j+1;−−−−−−−−−−−−−−→ ln

l
j≥d−−→ lstop

at location l (j is initialised to 0 when the automaton is initialised).
While the designers specify the behaviour-switches and model the possible deviations from nor-

mal behaviour, behaviour-vectors are generated automatically by the mutation generator (Section 11.4).
In order to control this generation process, each behaviour-switch position carries an upper bound in-
dicating up to how many times the transition can be taken. The bound can be taken from the set
N0 ∪ {∗} (in the sample state machine of Fig. 11.5 only 0 and ∗ are used): symbol ∗ indicates that the
mutant generator can select this transition an unbounded number of times when generating behaviour-
vectors; a bound be ∈ N0 associated with transition e constrains the behaviour-vector generation in
such a way that e occurs at most be times in the vector: num(v, e) ≤ be. A bound be reduces the
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Figure 11.4: Simple Architecture, System View

amount of model-mutations but leads to an under-approximation in the reliability calculation (see
further comments in Section 11.4).

Observe that all locations introduced on behalf of the behaviour-switch are urgent, since the switch
is only a selector of normal or mutated behaviour, and does not consume processing time in the real
world.

11.4 Mutation Generation and Reliability Calculation

Generation Concept.

Suppose we have created a CAMoLa model for each transaction type T` occurring in our communica-
tion architecture. The mutation generator creates concrete mutants as timed automata models, where
all nondeterminism regarding fault occurrences has been eliminated. This is achieved by means of
the behaviour-vectors: let {bs1, . . . , bsk} the behaviour-switches in the CAMoLa model associated
with transaction type T`. Given a bound max ∈ N, the mutation generator creates tuples of behaviour
vectors V = (vd1 , . . . , v

d
k), such that each behaviour switch bsi is associated with one behaviour vector

vdi of dimension d, and the following conditions are fulfilled: (1) d ≤ max, (2) each vector compo-
nent vdi (j), i = 1, . . . , k, j = 0, . . . , d − 1 is in range {0, . . . , ni}, such that an outgoing transition
with identifier vdi (j) exists at behaviour switch bsi, (3) the mutantsM(V ) associated with V satisfy
AG(¬φ)3 (we call them reliable mutants), and, (4) reducing the dimension of any vdi by one will
result in an unreliable mutant satisfying EFφ. Conditions (3) and (4) are checked by means of the
UPPAAL model checker.

Calculation of Overall Reliability.

It is our objective to calculate an approximation of the communication architecture’s expected relia-
bility which is conservative in the sense that the real reliability is equal to or better than the calculated
estimate. The calculations performed below are based on the assumptions that (1) no other faults oc-
cur in the communication system than the anticipated ones that have been represented in the CAMoLa
model by means of behaviour-switches, (2) all faults occur in a stochastically independent manner,
and, (3) the safety-related services are performed in a transaction-oriented manner as explained in
Section 11.1.2, so that the outcome of transactions is again stochastically independent.

3Recall that φ denotes the property that the system is in stable safe state, that is, still safe, but no longer operable.
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If these hypotheses are satisfied it is possible to approximate the reliable system operationR(t0, t1)
over a time period [t0, t1] by means of the reliability of single transactions: suppose that RT` is the
probability that execution of transactions of type T` will not transit into stable safe state, but perform
the specified service, and that different transaction types T`, ` = 1, . . . , q have to be considered. For
each transaction type T` let cmax` ∈ N the maximal number of T`-transactions which are possible
per time interval [t0, t1], and δ` > 0 the minimal duration of such a transaction. Then the overall
reliability R(t0, t1) can be approximated conservatively by

R(t0, t1) ≥ min{
q∏

`=1

(RT`)
c` | 0 ≤ c` ≤ cmax` ∧ t1 − t0 ≤

q∑

`=1

c` · δ` ≤ t1 − t0 + ε}

for ε satisfying 0 ≤ ε < max{δ` | 1 ≤ ` ≤ q}. The right-hand side of the above formula represents
the worst-case situation, where a maximal number of transactions is performed during time interval
[t0, t1], and the combination of transactions performed in this interval is technically still possible, but
represents the least reliable combination which may occur. It remains to determine the reliability of
each transaction type T`. To this end, we observe that the occurrence probability of a reliable mutant
M(V ) is

PV =
k∏

i=1

d−1∏

j=0

pi
vdi (j)

where pie denotes the occurrence probability of the basic fault (or normal behaviour) associated with
outgoing transition number e at behaviour switch bsi (so

∑ni
e=0 p

i
e = 1 for all i = 1, . . . , k). The

probability that a transaction of type T` will terminate successfully without transition into stable safe
state is

RT` =
∑

{V | M(V )|=AG(¬φ)}

PV +
∑

{π,V | M(V )|=EFφ∧π|=G(¬φ)}

Pπ · PV

where π denotes a computation of mutantM(V ) and Pπ the probability of π ′s occurrence: RT` is
the sum of all occurrence probabilities of reliable mutants plus the occurrence probabilities of paths in
unreliable mutants leading to successful completion of the transaction. If we neglect the occurrence
probability of reliable computations π in unreliable mutants and only consider reliable mutants whose
behaviour vectors v are of dimension dim(v) <= max, and each transition e emanating from a
behaviour switch occurs at most be ∈ N0 times in v, this results in the conservative approximation

RT` ≥
∑

{V | M(V )|=AG(¬φ)∧∀v,e:dim(v)≤max∧num(v,e)≤be}

PV

The right-hand side of this inequation can be computed by the mutant generator in combination with
the model checker.

Example.

As an example we demonstrate the calculation of the reliability of the example architecture in Fig.
11.4. This architecture consists of a transmitter, channel, receiver and observer, transmitter and re-
ceiver being allocated in the safety-layer. The observer performs a safety-related transaction which
completes successfully in terminal state success if a message sent on channel toUpperLayer is fi-
nally received on channel fromUpperLayer (see Fig. 11.5). The transmitter sends messages in fixed
cycles of 5 time units. It repeats a message with the same sequence number until a next message has
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to be transmitted. The receiver removes duplicated messages indicated by identical sequence num-
bers. It also monitors the operability of the transmission channel: at least one message within 14 time
units is expected (regardless of the sequence number). If no message is received within 14 time units,
the receiver transits into stableSafeState, so we are interested in the probability that the complete
system satisfies AG¬Receiver.stableSafeState, or, equivalently, RQ ≡ AFObserver.success (“RQ”
standing for Reliability Query). The communication channel includes a behaviour-switch bs1 with the
set of outgoing transitions identified by {0, 1}. The outgoing transition number 0 models the message-
loss-error and transition 1 transmits the message correctly. The *-character in the behaviour switch
denotes that the transition can be take arbitrarily many times, so there are no restrictions regarding the
creation of behaviour-vectors for bs1. The mutation generator generates the initial vectors v1

1,1 = (1),
v1

1,2 = (0) and starts the model-checking processes to verify RQ on each mutation. The model muta-
tion induced by v1

1,1 = (1) satisfies RQ, but the mutation induced by v1
1,2 = (0) violates RQ, because

the mutant derived from v1
1,2 will drop the first message and block as soon as the second message

arrives. In the next generation step, the mutation generator extends all vectors which are not satis-
fying RQ by all possible outgoing transitions of the behaviour-switch – this results in v2

1,1 = (0, 1),
v2

1,2 = (0, 0) – and resumes the verification process. The tool iterates until the dimension of the
vectors have reached a predefined limit (in the example we set the limit to 4, because we know that
RQ can never be satisfied in presence of more than 3 message-drops). In Fig. 11.7 the whole set of
generated behaviour-vectors is shown, each inducing one mutant model.

All behaviour-vectors whose mutants satisfyRQ represent reliable computations of the communi-
cation architecture: each transmission where only fault-combinations still ensuringAG¬Receiver.stableSafeState
occur is still reliable. The probability of transmitting a sequence of messages specified in a behaviour-
vector is calculated due to the known probability for an error-type to occur. In our example there
is a probability to drop (p0) or to transmit (1 − p0) a message. The probability that a sequence of
controlled transitions occurs is the product of each transition probability in a behaviour-vector (e.g.
v3

1,1 = (0, 0, 1), probability of occurrence: p(v3
1,1) = p0 · p0 · (1− p0)). We assume that all events are

stochastically independent. Now the reliability of a communication model is the sum of all mutation-
occurrence probabilities satisfying RQ. For the example system this results in the reliability formula
REx = (1− p0) + p0 · (1− p0) + p0

2 · (1− p0) which can be reduced to REx = 1− p0
3. 2

11.5 Discussion and Future Work

The reliability analysis of communication architectures according to the concepts introduced in this
article allows users to compare different architectural designs and fault-tolerance mechanisms of com-
munication protocols in safety-related domains. Furthermore, the analysis results induce requirements
on message error probabilities. These probabilities represent decision criteria whether specific trans-
mission techniques like WLAN, IP-Networks or xDSL should be allowed or forbidden in safety-
related communication architectures with high reliability requirements. We have successfully anal-
ysed the reliability of the safety protocol SAHARA over UDP [65], a proprietary session-layer over
the HDLC (High-Level Data Link Control) protocol, PROFIsafe over PROFINET and PROFINET
DCP (Basic Discovery and Configuration Protocol). The results of these analyses imply maximal
error probabilities and properties like maximal latencies of transmission techniques which are still
acceptable in presence of the high levels of overall reliability required. Additionally the knowledge
about the communication behaviour in presence of errors and error combinations has led to improve-
ments of protocol specifications. Due to the divide-and-conquer approach the availability of an array
of computers and multiple CPU cores makes model checking feasible on a large amount of error com-
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binations (i. e., mutants). We have successfully analysed an architecture with about 34 million error
combinations which takes about 60 hours with an array of 25 computers (each 3 GHz).

In the future, we will analyse further architecture specifications, especially with reliable transport
protocols like TCP and SCTP. Furthermore, we will improve the DSL CAMoLa for modelling com-
munication architectures in a more generic way, such that pre-defined error behaviours applicable in
specific communication domains can be re-used my means of building blocks from libraries. Addi-
tionally, it is planned to allow deviations from the transaction-oriented approach, in the sense that
some system variables will be allowed to evolve across sequences of transactions. This will be helpful
if, for example, fault counters are introduced in the system and incremented across transitions, so that
shutdowns can be enforced if the fault rate is considered to be too high: in such a situation the success
of a transaction also depends on the probability that the fault counter has reached its admissible limit
before start of transaction.
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Chapter 12

Case Studies

12.1 Cabin Smoke Detection in Airplanes

The smoke detection protocol – as layed out in Airbus specifications [3, 4, 5] – is a CAN-based
protocol, where the individual smoke detection units are connected via short can bus segments in a
daisy-chain layout. Start- and endpoint of the this chain is a controller unit (called CIDS), which
collects configuration and system data and infers topology changes in case of failure (non-responding
smoke detectors).

The case study encompasses high-level modeling of selected aspects thereof. In particular the
parts that concern scalability (length of the chain) and asynchronous operations (smoke detection /
can bus operations) are highlighted by this selection.

12.1.1 Goals of the Smoke Detection Case Study

The goals of this case-study are layed out as follows.

1. Evaluate modeling power of our CDSL

The modeling power of the (drafted) contract domain-specific language (CDSL)–see section 4–
shall be evaluated with respect to adequateness of the provided modeling facilities.

2. Evaluate usability of the modeling elements

The adequateness of the CDSL language components (usability) with respect to the avionics
domain shall be evaluated. The guiding principle here is that what is simple to comprehend
should be simple to express in the model.

3. Evaluate correspondence with GTL representation

The possibility of (automatic) translation of the CDSL to the GTL shall be assessed. For this, a
manual translation of the model shall be constructed.

4. Evaluate performance of instance concept (scalability)

Adequateness of the instance concept (many concrete components derived from one generic
pattern) shall be evaluated. In particular the representation of interfaces between components
shall be considered.
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Figure 12.1: Example of A350xwb application architecture.

12.1.2 The A350xwb Smoke Detection Protocol

Selection of Smoke Detection Requirements

The requirements concerning the A350xwb smoke detection protocol fills several specification doc-
uments [3, 4, 5]. They encompass possible configurations of the physical layout, operation modes,
power supply architecture, definition of the application layer of the CAN protocol, and controller unit
software requirements.

Moreover, several smoke detection configuration modes are supported, like grouping some (or
all) of the smoke detectors (“Dual Sensor Application”) or having fire extinguishing data converters
(FEDCs) as part of the layout. Figure 12.1 gives an example of a possible application architecture.
It also shows that the smoke detection facility (SDF) is not directly connected to the smoke detector
CAN bus segments, but relays communication via two other hardware units named CIDS and DEU-B.

Not all of this is relevant for us: we are interested in sample requirements that can be subject to
(automated) verification in the GALS system architecture.

Therefore we focus on the following properties that can be considered essential with respect to
the unique characteristics of this protocol:

• Controller and smoke detectors access a number of CAN bus segments. Each segment can
only carry (undirected) payload that is available to both connected units. The CAN priority
mechanism resolves conflicts, if both parties attempt write-access to the CAN bus segment.

• Data flow follows both directions of the CAN chain. The protocol definition has to ensure that
no relevant information is “lost” by the CAN priority mechanism.
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• There are two basic operational modes:

(A) Ident Request Mode
Here the controller asks every smoke detector unit to report identity and health status by
broadcasting a message.

(B) Status Polling Mode
Here the controller sends addressed requests (uni-cast) for the smoke status of every smoke
detector in a round-robin fashion.

• An Ident Request initiated by the controller reaches the controller again, when the end of the
chain is reached.

CAN bus segment failures are detected during the Ident request mode by either

(A) acknowledgment timeout at smoke detector N while forwarding the request to smoke
detector N + 1; this timeout generates a (downstream) reply to the controller

(B) Ident Request Timeout at the controller (missing reply from both directions)

Selection of verification goals (or user requirements).

REQ-SD-01 If no CAN bus segment failure occurs, then an initiated upstream Ident request
reaches the controller again before timeout.

REQ-SD-02 If a CAN bus segment failure occurs, this is properly identified during Ident Re-
quest, i.e., the controller reaches a state appropriate to the location of the failure.

REQ-SD-03 Smoke alarms that are detected in smoke detectors which have an operative chain
of CAN bus connections to the controller will reach the controller within an appropriate
time limit.

The Smoke Detection Model Abstraction

It is conceivable that a full-blown model of the complex A350xwb smoke detection facility exceeds
the scope of this case study.

In the following we will strip away parts of the specification, while preserving the essence of the
protocol. The guiding principle is that the user requirements layed out in section 12.1.2 must still be
meaningful.

Component and configuration simplifications.

1. DEU-B, CIDS, and SDF are abstracted into one controller unit which we refer to as “CIDS” in
the model.

2. Dual sensor application is omitted, every smoke detector is single sensor.

3. Fire extinguishing data converter (FEDCs) are omitted.
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Data simplifications.

1. The payload of the CAN data protocol is omitted; the model preserves only the CAN identifier
data, which suffices to

• communicate the role of the message in the protocol (identification request, identification
reply, acknowledgment, smoke warning)

• determine the message priority
• read out addressing information (broadcast/uni-cast)

2. Smoke warning is reduced to one bit of information (“smoke detected or not”).

Each of this simplifications may be dropped later on in order to add complexity to the smoke
detection example.

Overview on the Resulting Model. The resulting composite structure of the model is displayed in
Figure 12.2.

The constants used for this model are listed in <<enumeration>> containers.

• CAN MSG IDENT CONSTS (data present on CAN bus segments)

• TIMING CONSTANTS (for timing configuration of the model behavior)

The dynamic parts of the models are captured via class diagrams, which all are linked to state
machines to explain the dynamic behavior.

• CAN (CAN bus segments; the prioritization of incoming data is modeled as behavior)

• CIDS (the controller component)

• SMOKE DETECTOR (receiving smoke warning, reading/writing to CAN in both directions)

• SMOKE SENSOR (reporting the measured smoke status)

The stereotype <<interface>> is used for data streams.

• UP IN (data flow: upstream, as seen from one CAN bus segment)

• DOWN IN (data flow: downstream, as seen from one CAN bus segment)

• OUT (the actually visible value on the CAN bus, after prioritization)

• SMOKE WARNING (to communicate the information “does it smoke?”)

A detailled description follows below on page 108.

GALS-Model of the A350xwb Smoke Detection Protocol

This Section describes the GALS system of systems model developed as part of the A350xwb smoke
detection protocol case study. We use the Enterprise Architect tool as sketched in section 4.4 to
graphically represent the system under consideration.

Functionality and structure is abstracted to a level suitable for the generation of contracts arguing
over each locally synchronous system. As such, it will be used as the basis for the automated derivation
of contracts in later phases.

The following elaborates on model layout sketched in section 12.1.2. The individual components
are described in detail.
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Figure 12.2: Composite structure — System under test

Asynchronous components

Figure 12.2 shows the composite structure diagram used to decompose the globally asynchronous
system of systems into its subsystems and interfaces needed to communicate.

The class CAN represents (the behavior of) an individual CAN bus segment within the ring bus
topology. Each instance is parametrized using the unique identifier id_C. Since each CAN segment
can be written to from both its ends, the two interfaces DOWN IN and UP IN are provided for
upstream and downstream assignments respectively. These are again parametrized using the unique
identifiers id_D and id_U respectively. To allow other systems to write onto a CAN bus segment,
the class CAN provides these interfaces. By convention, each class instance CAN[id C] will pro-
vide interface instances DOWN IN[id D = id C] and UP IN[id U = id C] respectively. Con-
versely, systems can read a CAN bus segment by accessing an instance of interface OUT, which is
parametrized using identifier id_O. Therefore, each class instance CAN requires interface instance
OUT[id O = id C].

The class CIDS represents the cabin intercommunication and data system, the controller respon-
sible for smoke detection. Since it writes to CAN segment 0 (upstream), it requires interface in-
stance UP IN[id U = 0]. For reading upstream and downstream CAN segments, interface instances
OUT[id O = 0] and OUT[id O = n] are provided, respectively. Note that n denotes the number of
smoke detector instances in this context.

The class SMOKE DETECTOR, combined with the class SMOKE SENSOR, represents an
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Figure 12.3: State chart — CAN bus

individual smoke detector as integrated into the airplane cabins. It is parametrized using identifier
id_SD. When sending data upstream, each instance requires interface instance UP IN[id U =
id SD]. Sending downstream is accomplished via interface instance DOWN IN[id D = id SD
−1]. The interface SMOKE WARNING is used for 1-on-1 communication between smoke detec-
tors and their respective smoke sensors.

Synchronous Component — CAN bus

A synchronous component CAN distinguishes two separate control states, state Normal Operation and
state BusFailure. This is depicted in Figure 12.3. The system can transition between these two control
states non-deterministically to reflect the fact, that the bus system may fail (or resume operation) at
any time.

Within state BusFailure no data can be read from the bus, so the constant CAN identifier
CAN_ID_NO_DATA is output to the appropriate interface instance.

Within state NormalOperation the CAN bus prioritizes its output according to the CAN message
identifiers read from upstream and downstream input interfaces. This is realized in the form of the
decision tree depicted in figure 12.4.

Whenever the downstream input CAN message identifier read from the corresponding interface
has a higher priority than the available upstream input, the downstream input is relayed to the output
interface. Otherwise, the upstream input is relayed. The auxiliary attribute isConditionStable
is used to reevaluate the decision tree whenever changed inputs demand this.

Synchronous Component — CIDS

The CIDS subsystem is decomposed into two functions CIDS LOGIC and UPSTREAM running in
parallel. Figure 12.5 shows the corresponding composite structure diagram. Function CIDS LOGIC
realizes the Ident request protocol as intended for the CIDS-side of the protocol. Within its definition,
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Figure 12.4: State chart — CAN bus normal operation

Figure 12.5: Composite structure — CIDS
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Figure 12.6: State chart — CIDS Logic

it determines what CAN messages to send in its upstream direction, and places the corresponding
CAN message identifier in attribute TOSEND_UPSTREAM. Function UPSTREAM is then responsi-
ble for placing the corresponding CAN message on the upstream CAN bus and supervising its delivery.

Figure 12.6 shows the state chart for CIDS function CIDS LOGIC. This state chart defines the
protocol logic for the Ident request functionality. Initially, CIDS has to send an Ident request up-
stream, and does so in control state TRANSMIT IDENT REQUEST. After that, an acknowledgment
is expected from the immediate upstream neighbor smoke detector. If this is not received after a time-
out, the system transitions into state CANFAIL NOACK, and the in-operational first CAN segment
can be inferred. A received acknowledgment lets the system transition into state ACK RECEIVED.

In state ACK RECEIVED CIDS expects to receive its own Ident request from the immediate
downstream neighbor smoke detector to indicate a complete round trip and function bus topology.
In the event of a bus failure between two smoke detectors (or between the last smoke detector and
CIDS) an Ident reply is received from the upstream smoke detector, which contains the address of
the last smoke detector to have received the original Ident request. This again lets the CIDS infer
the position of the inoperative CAN bus segment in question, and the system transitions into state
CANFAIL REPLY RECEIVED. If neither message arrives within a given timeout, the protocol has
failed, and no reliable diagnosis is possible.

Synchronous Component — Smoke Detector

The SMOKE DETECTOR subsystem is decomposed into four functions SD LOGIC, UP-
STREAM SD, DOWNSTREAM SD, and Ident Request Watchdog. Figure 12.9 shows the
corresponding composite structure diagram. Function SD LOGIC realizes the fundamental smoke
detector behavior, which is complying with the upstream/downstream protocol. According to the
direction of the input, either UPSTREAM SD or DOWNSTREAM SD is active, organizing the
respective data flow direction. The state machine Ident Request Watchdog is used to measure
timely acknowledgment of Ident requests that are forwarded upstream.

Figure 12.10 shows the state chart for smoke detector function SD LOGIC. Since CAN bus
access is prioritized, only one data flow direction can be active at any one time. The data flow with
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Figure 12.7: State chart — Ident request mode

Figure 12.8: State chart — CIDS Upstream
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Figure 12.9: Composite structure — Smoke detector

Figure 12.10: State chart — SD Logic
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Figure 12.11: State chart — SD Upstream

lower priority is necessarily lost. Depending on the direction of the input, this state chart splits up into
the sub-behavior corresponding to the currently active data flow direction (upstream or downstream).
Smoke alarms are processed in the upstream context: If status polling is received in this data flow
direction, then the (downstream) reply contains the smoke alarm information.

Figures 12.11 and 12.12 show the state charts UPSTREAM SD and DOWNSTREAM SD
relevant for putting the intended data on the CAN bus, They follow the same systematic like
Upstream CIDS, compare Figure 12.8 (page 113).

Figure 12.13 shows the state chart for the smoke detector function Ident Request Watchdog.
This is part of the protocol behavior connected to the Ident request mode, where smoke detector
identity requests are forwarded upstream until they reach CIDS again at the end of the chain (in the
nominal case). Forwarded Ident requests have to be acknowledged by the next smoke detector further
down the chain, in order to determine sanity of the connection. The MFT IDENT REPLY is the
error message to be reported back downstream, if the acknowledged does not arrive in time.

Data stream processing via Decision Trees.
The “do”-actions processUpstream() and processDownstream() in Figure 12.10 are

in fact state machines, that process the data processing of CAN information received in directions
upstream and downstream respectively.

The state charts in Figure 12.14 and Figure 12.15 give decision-tree style definitions of this op-
erations. Note that the leaf-nodes of the trees essentially assign output variables and enforce re-
evaluation, if input changes (isConditionStable becomes false).

This is discussed later in more detail, see Section 12.1.3.
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Figure 12.12: State chart — SD Downstream

Figure 12.13: State chart — Ident request watchdog
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Figure 12.14: State chart — Input Upstream
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Figure 12.15: State chart — Input Downstream
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12.1.3 Analysis of the Smoke Detection Model

This section contains the analytic part of the case study, where the details are explained and elaborated.

Instance Concept Realization

The possibility to derive a large number of similar components (instances) from one template (class)
is an important feature of the domain specific language. This is illustrated in the smoke detection
example, where it is desirable to model the contract network without committing to the size of the
smoke detector chain a priori. Instead, we want to assume a parameter N and formulate N smoke
detectors connected via N + 1 CAN bus segments to one CIDS. Every smoke detector is connected
to a smoke sensor, so we have N smoke sensors.

For the modeling formalism, every class naturally offers the possibility to construct several in-
stances. The interesting question is how to identify and connect them properly.

(1) Every class comes equipped with a class variable named id <SHORT CLASSNAME> which
identifies the instance; (i.e. for the first instance it will have value 1, for the second instance
value 2, and so on).

(2) Every interface is essentially a data container and comes also equipped with a property variable
named id <SHORT INTERFACENAME>.

(3) The connection of data streams is identified by the relative index. Smoke detector
SMOKE DETECTOR[id] accesses the CAN input from upstream via interface CAN[id] and
the interface from downstream via CAN[id-1].

(4) A separate instance table defines the range of instances for each class.

In Figure 12.2, there is but one place where the N explicitly shows, namely the index of the
right (upstream) input interface connection “OUT[12]”. The instance table for N=12 is displayed in
Figure 12.16.

Both the model and the instance table are inputs to the transformation mechanism to the GTL.
More details can be found in the CDSL description.

Discussion: Decision Trees vs. Decision Tables

Part of the operations in the model concern transformation of input data to output data.
More precisely, data arriving in upstream direction can be forwarded to the next upstream smoke-

detector (via CAN) and at the same time trigger a response in the downstream direction.
Data arriving in downstream direction is plainly forwarded.

1 void p r o c e s s U p s t r e a m ( OUT CAN 1 Identifier , TOSEND UPSTREAM, TOSEND DOWNSTREAM) {
2 sw i t ch ( OUT CAN 1 Identifier & CAN ID MASK NO ADDR) {
3 case MFT IDENT REQUEST:
4 TOSEND UPSTREAM = OUT CAN 1 Identifier ;
5 TOSEND DOWNSTREAM = MFT IDENT ACK | ( myAddress << 5) ;
6 break ;
7 case MFT SD POLLING REQUEST:
8 i f ( ( OUT CAN 1 Identifier & ˜CAN ID MASK NO ADDR) == ( myAddress << 5) ) {
9 TOSEND UPSTREAM = CAN ID NO DATA;

10 i f (SMOKE SD2) {
11 TOSEND DOWNSTREAM = MFT SD ALARM | ( myAddress << 5) ;
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INSTANCES OF SMOKE DETECTOR
id_SD 1 12
INSTANCES OF SMOKE SENSOR
id_SS 1 12
INSTANCES OF SMOKE WARNING
id_SW 1 12
INSTANCES OF DOWN IN
id_DI 0 12
INSTANCES OF UP IN
id_UI 0 12
INSTANCES OF CAN
id_C 0 12
INSTANCES OF OUT
id_O 0 12
INSTANCES OF CIDS
id_CIDS 0 0

Figure 12.16: Instance Table for Smoke Detection Model

12 }
13 e l s e {
14 TOSEND DOWNSTREAM = MFT SD POLLING REPLY | ( myAddress << 5) ;
15 }
16 }
17 e l s e {
18 TOSEND UPSTREAM = OUT CAN 1 Identifier ;
19 TOSEND DOWNSTREAM = CAN ID NO DATA;
20 }
21 break ;
22 d e f a u l t :
23 TOSEND UPSTREAM = CAN ID NO DATA;
24 TOSEND DOWNSTREAM = CAN ID NO DATA;
25 break ;

Listing 12.1: Operation processUpstream()

1 void processDowns t ream ( OUT CAN 2 Identifier , TOSEND UPSTREAM, TOSEND DOWNSTREAM) {
2 sw i t ch ( OUT CAN 2 Identifier & CAN ID MASK NO ADDR) {
3 case MFT IDENT REPLY:
4 case MFT SD POLLING REPLY;
5 case MFT SD ALARM;
6 TOSEND UPSTREAM = CAN ID NO DATA;
7 TOSEND DOWNSTREAM = OUT CAN 2 Identifier ;
8 break ;
9 d e f a u l t :

10 TOSEND UPSTREAM = CAN ID NO DATA;
11 TOSEND DOWNSTREAM = CAN ID NO DATA;
12 break ;
13 }
14 }
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OUT[id_SD-1] & CAN_ID_MASK_NO_ADDR == MFT_IDENT_REQUEST Y N N N N
OUT[id_SD-1] & CAN_ID_MASK_NO_ADDR == MFT_SD_POLLING_REQUEST * Y Y Y N
(OUT[id_SD-1] & ˜CAN_ID_MASK_NO_ADDR) == (myAddress << 5) * Y Y N *
SMOKE_WARNING[id_SD] * N Y * *
TOSEND_UPSTREAM = OUT[id_SD-1]; x x
TOSEND_UPSTREAM = CAN_ID_NO_DATA; x x x
TOSEND_DOWNSTREAM = MFT_IDENT_ACK | (myAddress << 5); x
TOSEND_DOWNSTREAM = MFT_SD_ALARM | (myAddress << 5); x
TOSEND_DOWNSTREAM = MFT_SD_POLLING_REPLY | (myAddress << 5); x
TOSEND_DOWNSTREAM = CAN_ID_NO_DATA; x x

Figure 12.17: Decision Table for processUpstream()

Listing 12.2: Operation processDownstream()

This can be expressed with C-style code, see Listing 12.1 (Upstream) and Listing 12.2 (Down-
stream).

Note that it is clearly not desirable to allow arbitrary C/C++ code snippets in the CDSL. This
would make the model semantic so powerful that it is doubtful that a translation to GTL is still possi-
ble.

Formulation as Decision Tree. In the CDSL, one straightforward choice of representation is a state
machine in the form of a decision tree, where every leaf node corresponds to the final assignment.
Since the operation is a (do/entry) action associated with one state, the decision-tree-style state ma-
chine is a sub-state, the leaf node has to be left if one of the input changes. In the model, the auxiliary
Boolean variable “isConditionStable” is used to enforce re-traversal of the tree, if an input
changes. Note that the parent state-machine SD Logic (Figure 12.10) enforces re-entry of the sub-
states, if isConditionStable evaluates to false.

For processUpstream(), Figure 12.14 displays the corresponding decision tree.
For processDownstream(), Figure 12.15 displays the corresponding decision tree.

Formulation as Decision Table. An alternative formulation of operations is the decision table.
There are several competing definitions of decision table. We follow the suggestion from [84], i.e.,
use the upper half as conditions and the lower half as actions.

The upper right-hand part (condition entry) is filled with “Y”es for true, “N”o for false, and “*”
for don’t-care; a set of conditions hold, if all condition entries in a column are either “*” or match the
truth value (“Y”/“N”) of the condition stub in their row.

Since our actions are always assignments to model variables, we use C-style assignment nota-
tion and mark a column with an “x”, if the assignment shall be executed (under the matching set of
conditions). Moreover, we use the same condition parts for the assignments of both output variables
(instead of splitting up into one decision table for each output variable). The separation of the two
action parts it indicated by horizontal double-bar (==).

For processUpstream(), Figure 12.17 displays the corresponding decision table.
For processDownstream(), Figure 12.18 displays the corresponding decision table.
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OUT[id_SD] & CAN_ID_MASK_NO_ADDR == MFT_IDENT_REPLY Y N N N
OUT[id_SD] & CAN_ID_MASK_NO_ADDR == MFT_SD_POLLING_REPLY N Y N N
OUT[id_SD] & CAN_ID_MASK_NO_ADDR == MFT_SD_ALARM N N Y N
OUT[id_SD] & CAN_ID_MASK_NO_ADDR == MFT_SD_ALARM N N N N
TOSEND_UPSTREAM = CAN_ID_NO_DATA x x x x
TOSEND_DOWNSTREAM = OUT[id_SD]; x x x
TOSEND_DOWNSTREAM = CAN_ID_NO_DATA; x

Figure 12.18: Decision Table for processDownstream()

Comparison. The following collects positive (⊕) and negative (	) aspects of each formalism, as
elaborated for the two examples processUpstream() and processDownstream().

Pro and Contra points for the decision tree formulation:

⊕ No extra model element required

⊕ Systematic structure

	 Fairly big for even a moderate example

	 Several sub-expressions get repeated often (difficult to keep changes consistent)

	 Difficult to read for examples with long identifiers/operations

	 Introduces dependencies across two levels of the state machine hierarchy (variable
isConditionStable)

	 Prone to modeling mistakes (e.g., forgetting one assignment, negating one condition, etc.)

Pro and Contra points for the decision table formulation:

⊕ Widely understood notation

⊕ Compact and precise; virtually no duplication

⊕ Easily verifiable (“have I written what I thought?”)

	 Requires introduction of new model element (stereotype)

In conclusion, the decision trees do not seem adequate for modeling. The decision table notation
is far more compact and readable in this context. Thus, it should be included in the CDSL.

Model Transformation to GTL

The transformation follows the principles layed out in section 4.5. For the Smoke Detection Case
study, the transformation has been done manually.

The full result (instantiation with 2 Smoke Detectors / 3 CAN bus segments) is displayed in
Listing A.1 on page 177.
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1 s t a t e INPUT UPSTREAM {
2 ( ( ( OUT CAN Identifier DOWNSTREAM = MFT IDENT REQUEST)
3 => ( (TOSEND UPSTREAM = OUT CAN Identifier DOWNSTREAM ) and (

TOSEND DOWNSTREAM = MFT IDENT ACK + myAddress ) ) )
4 and
5 ( ( ( OUT CAN Identifier DOWNSTREAM = MFT SD POLLING REQUEST + myAddress ) )
6 => (TOSEND UPSTREAM = CAN ID NO DATA) )
7 and
8 ( ( ( OUT CAN Identifier DOWNSTREAM = MFT SD POLLING REQUEST + myAddress ) and

( smoke = t rue ) )
9 => (TOSEND DOWNSTREAM = MFT SD ALARM) )

10 and
11 ( ( ( OUT CAN Identifier DOWNSTREAM = MFT SD POLLING REQUEST + myAddress ) and

( smoke = f a l s e ) )
12 => (TOSEND DOWNSTREAM = MFT SD POLLING REPLY) )
13 and
14 ( ( ( OUT CAN Identifier DOWNSTREAM = MFT SD POLLING REQUEST) and ( f a l s e ) )
15 => ( (TOSEND UPSTREAM = OUT CAN Identifier DOWNSTREAM ) and
16 (TOSEND DOWNSTREAM = CAN ID NO DATA) ) )
17 and
18 ( ( not ( ( OUT CAN Identifier DOWNSTREAM = MFT IDENT REQUEST) or
19 ( OUT CAN Identifier DOWNSTREAM = MFT SD POLLING REQUEST) ) )
20 => ( (TOSEND UPSTREAM = CAN ID NO DATA) and
21 (TOSEND DOWNSTREAM = CAN ID NO DATA) ) )
22 ) ;
23 t r a n s i t i o n [ OUT CAN Identifier DOWNSTREAM = CAN ID NO DATA]
24 NO INPUT ;
25 }

Listing 12.3: Translation of processUpstream() to GTL

1 s t a t e INPUT DOWNSTREAM {
2 / / u s i n g : OUT CAN Identifier UPSTREAM i n s t e a d o f ( c o r r e c t : )

OUT CAN Identifier UPSTREAM & CAN ID MASK NO ADDR
3 ( ( ( ( OUT CAN Identifier UPSTREAM = MFT IDENT REPLY) or
4 ( OUT CAN Identifier UPSTREAM = MFT SD POLLING REPLY) or
5 ( OUT CAN Identifier UPSTREAM = MFT SD ALARM) )
6 => ( (TOSEND UPSTREAM = CAN ID NO DATA) and
7 (TOSEND DOWNSTREAM = OUT CAN Identifier UPSTREAM ) ) )
8 and
9 ( ( not ( ( OUT CAN Identifier UPSTREAM = MFT IDENT REPLY) or

10 ( OUT CAN Identifier UPSTREAM = MFT SD POLLING REPLY) or
11 ( OUT CAN Identifier UPSTREAM = MFT SD ALARM) ) )
12 => ( (TOSEND UPSTREAM = CAN ID NO DATA) and
13 (TOSEND DOWNSTREAM = CAN ID NO DATA) ) )
14 ) ;
15 t r a n s i t i o n [ OUT CAN Identifier UPSTREAM = CAN ID NO DATA]
16 NO INPUT ;
17 }

Listing 12.4: Translation of processDownstream() to GTL

Of particular interest is the translation of the operations processUpstream() (Listing 12.1)
and processDownstream() (Listing 12.2). They are translated to invariants in the GTL model,
see Listing 12.3 and Listing 12.4. Notice that a switch-like structure gets transformed to a logical
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expression of the following form:
∧

casei

(conditioni ⇒ actioni) ∧
(
¬(
∨

casei

conditioni)⇒ actiondefault
)

Formulation of the Verification Goals. The user requirements (page 107) are the basis of formu-
lating verification goals concerning the system in terms of model elements. For the case study, the
verification goals are formulated manually in GTL, see Listing 12.5 on page 124.

1 v e r i f y {
2 / / REQ−SD−01: no CAN bus f a u l t i m p l i e s I d e n t R e q u e s t Round−T r i p
3 ( a lways ( not can0 . B u s F a u l t ) and ( not can1 . B u s F a u l t ) and ( not can2 . B u s F a u l t ) )
4 i m p l i e s
5 ( t rue u n t i l ( CIDS . I d e n t R e q u e s t D o n e and (0 = CIDS . i n f e r T o p o l o g y C a n F a i l ) ) ) ;
6
7 / / REQ−SD−02: CAN bus f a u l t s d e t e c t e d
8 a lways ( ( ( can0 . B u s F a u l t ) or ( can1 . B u s F a u l t ) or ( can2 . B u s F a u l t ) )
9 i m p l i e s

10 ( t rue u n t i l ( not (0 = CIDS . i n f e r T o p o l o g y C a n F a i l ) ) ) ) ;
11
12 / / REQ−SD−03: ( f o r m u l a t e d f o r SD1 smoke and a t most 1 CAN b u t f a i l )
13 ( a lways
14 ( ( ( a lways ( ( not can1 . B u s F a u l t ) and ( not can2 . B u s F a u l t ) ) ) or
15 ( a lways ( ( not can0 . B u s F a u l t ) and ( not can2 . B u s F a u l t ) ) ) or
16 ( a lways ( ( not can0 . B u s F a u l t ) and ( not can1 . B u s F a u l t ) ) ) ) and
17 s e n s o r 1 . smoke )
18 i m p l i e s
19 ( t rue u n t i l ( not (0 = c i d s 0 . smokeAlarm ) ) ) ;
20 }

Listing 12.5: Smoke Detection Verification Goals, formulated for 2 Smoke Detectors

Post-Processing the GTL — transformation to PROMELA. The GTL formulation of the smoke
detection model (Listing A.1) has been post-processed with the gtl.exe as provided by TU Braun-
schweig.

The post-processing was only partially successful with gtl version 0.1 (9 Jun)1 was only par-
tially successful: the resulting PROMELA file was too big (117MB), so the SPIN output file (pan.c)
failed to compile.

However, it was possible to track down the output size problem to the formulation of the invariant
corresponding to processUpstream(), Listing 12.3.

Constructing a partial model smoke-part-large.gtl with only one instance of that model
(SDLOGIC), the gtl.exe output for (Listing A.2) is 18MB large (too big).

Now if the invariant is omitted, then the gtl.exe output for this simplified model (Listing A.3)
is only of size 1.6KB.

Apparently the invariants are very closely related to the size of the PROMELA output.

1Output of gtl --version:
This is the GALS Translation Language of version 0.1.
Built on Thu Jun 9 10:01:01 UTC 2011.
Built from git tag: a5357135ce507990999c43e1280c8857b61a785d.
Built from git branch: master.
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12.1.4 Assessment of Results

Evalation of Goals of the Case Study

Below is the evaluation of the goals as layed out in Section 12.1.1.

→ GOAL #1 [Evaluate modeling power of our CDSL]
During the case study the concepts of instances, interfaces, and behavioral state machines did

suffice to express the desired behavior of the smoke detection system.
See sections 12.1.2, 12.1.2.

Goal Assessment: The CDSL is adequate in modeling power.

→ GOAL #2 [Evaluate usability of the modeling elements]
Most modeling elements allowed for a straightforward formulation of the concepts at hand and

proved to be expressive. Hierarchical state machines are a powerful tool for behavioral description.
An exception to this is the modeling of data transformations (processUpstream, process-

Downstream, which seems cumbersome to express with the (language built-in) concept of decision
trees.

See discussion in section 12.1.3.
Goal Assessment: CDSL should include a concept of decision tables.

→ GOAL #3 [Evaluate correspondence with GTL representation]
The guiding translation principles seem to be fairly straightforward to automate. Minor obstacles

can be expected with respect to the transformation of transition actions to invariants.
See section 12.1.3

Goal Assessment: Automatic transformation from the CDSL to GTL should be imple-
mented as sketched.

→ GOAL #4 [Evaluate performance of instance concept (scalability)]
The instance concept consisting of a template model and a instance table is sufficiently expressive

to describe the (semi-)ring topology in the case study. In particular referencing the interface via
index appears to be flexible and allows precise specification with only little overhead (like one smoke
detector to connect to two CAN bus segment interfaces, identified as OUT[id] and OUT[id-1]).

See section 12.1.3.
Goal Assessment: Providing instances of interfaces and refer to them via an index seems

adequate.

Further Lessons Learned

→ [Necessity to model LSCs as network of State-Machines]
If Locally Synchronous Components (LSCs) exhibit complex behavior it is very desirable to allow

for parallelism in the description of the component.
In our case study, the smoke detector (see Figure 12.9) processes two data streams (one upstream,

one downstream), so that it seems natural to decouple this behavior into separate state machines
(Figure 12.11, Figure 12.12).

Building a product automaton for parallel state machines manually is both tedious and error-prone.
Therefor, automated parts of the tool chain should perform this task:
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(a) Either the transformation from CDSL to GTL, or

(b) The GTL should allow to group models into “one” locally synchronous component (LSC).

Of these options, (b) is the more attractive one: Other front-ends of the GTL language can benefit
from this feature as well.

→ [GTL should include bit-operators (bitwise and, or, negate, shift)]
Some expressions are difficult to formulate (or at least: difficult to read), if basic bit-operators are

missing. See Listing 12.4: The expression to compare with should be correctly

OUT_CAN_Identifier_UPSTREAM & CAN_ID_MASK_NO_ADDR

While this can be equivalently expressed with integer arithmetic, the following operators should
be supported by the GTL on integers for readability.

A & B bit-wise AND operation

A | B bit-wise OR operation

∼A one’s complement operator (toggle all bits)

A << CONST bit-wise SHIFT-LEFT operation

A >> CONST bit-wise SHIFT-RIGHT operation

Here, A and B are expressions and CONST is a literal (0..31).
The semantics should be according to the C programming language. This is not assumed to cause

problems, since the operations can be carried over (untranslated) to PROMELA, SCADE, or UPPAAL
output.

→ [GTL Performance Problem (large PROMELA output)]
The case study did uncover a performance problem in the output generated by the GTL parser

(here: to PROMELA). It was also possible to narrow it down somehow, see section 12.1.3. At this
point in time this prevents further explorations of the tool chain.

It also shows that the naive translation from LTL to Büchi automata implemented in the current
early prototype of the GTL tool is insufficient and needs to be optimized. We expect that this will
happen in the course of the future work packages 2 and 3 of VerSyKo.

12.2 Level Crossing Systems

A level crossing is a location where a railway line is intersected by a road. To ensure a safe crossing of
railway and road traffic, a level crossing system must be installed. Every time a train is approaching
and entering the block section of the level crossing, the installed level crossing system has to ensure
that the train is reliably recognized, and as a result, the road traffic is prevented from crossing the
railroad in order to guarantee a safe passage for passing trains. A level crossing generally consists of
different subsystem-components, distributed to different locations. Each component is a safety critical
component with software realizing the functional behavior. Therefore, the software implementation
tool SCADE is suitable for the development. As the synchronous components must exchange data to
fulfill the overall system functionality, a communication infrastructure must be provided. Due to the

126



mentioned distributed localization of the (synchronous) components, the communication infrastruc-
ture is embedded in an asynchronous environment.

The level crossing regarded in the case study consists of the following modules that have been
implemented as synchronous components in SCADE:

• Four traffic signal installations (traffic lights),

• one monitoring signal for the railroad traffic,

• two barriers,

• a detection systems called an axle counter2 (including detection points and calculator),

• and an automatic control system responsible to navigate or control the overall system.

The model provides a perfect example of a GALS system and can therefore be used to serve as a
benchmark for the GALS verification framework to be developed as part of the VerSyKo project. In
the following, we will describe the user-level requirements for the level crossing system (Sec. 12.2.1).
Based on the user-requirements, the synchronous subsystem-components have been developed in
SCADE, whose implementation is introduced in Sec. 12.2.2 and 12.2.3. The generated code, de-
rived from the SCADE implementations with the kcg-compiler of SCADE, has been used to verify
the level crossing system at the source code level using SPIN/PROMELA. The results are provided in
Sec. 12.2.4, showing that a direct verification at the source code level is not feasible. Indeed, suitable
abstractions in form of contracts are necessary as envisioned by the GTL contract specification/verifi-
cation framework of project VerSyKo.

Fig. 12.19 displays a graphical description of the level crossing system. The level crossing con-
sists of a two-lane street open to be traveled in both directions. The street is intersected by a single
unidirectional rail track. There are two traffic lights in each direction of the road traffic, a single
monitor signal for the railroad traffic3, an axle counter with a detection point at both ends of the level
crossing, and an automatic control system. The automatic control system is connected to all other
systems to be able to control these subcomponents.

The implementation of the level crossing system has been realized with the software modeling
tool SCADE. As SCADE is used to implement reactive software systems, the implementation of the
level crossing only includes the software part. Hardware parts are generally disregarded4. To be more
accurate, hardware of the level crossing system is abstracted by interfaces.5

12.2.1 Requirements

For the level crossing system there is a detailed document of requirements [93]. This section will not
provide a translation of all requirements of the requirement documentation. Only requirements that
are necessary to understand the functionality of the level crossing system (called user-requirements)
will be discussed.

2http://en.wikipedia.org/wiki/Axle_counter
3As the train can only pass the level crossing in one direction as described above.
4Hardware systems are not part of the research project. Only synchronous software systems built in SCADE are part of

consideration.
5The abstraction of hardware via interfaces will be explained in Sec. 12.2.2.

127

http://en.wikipedia.org/wiki/Axle_counter


Figure 12.19: General layout of the level crossing regarded in the case study.

Cyclic execution behavior
The overall system functionality of the level crossing system is depicted in Fig. 12.20. The functional-
ity is abstracted by a state machine (UML6 style), where transitions and states are labeled with pseudo
code. Generally, the level crossing system has a cyclic behavior. Every time a train enters the block
section of the level crossing and is detected by the axle counter system, the road traffic is thereafter
prevented from crossing the railroad to ensure that the train can safely cross, which is realized by the
subsystem’s automatic control system, traffic light(s) and barrier(s). In the state machine description
of Fig. 12.20, the cyclic behavior starts in the state Released, where the road traffic is allowed to pass.
If a train enters the block section of the level crossing, the level crossing must be safeguarded for the
train (Safeguarding I, Safeguarding II and Safeguarded). Hence, the traffic lights are switched on to
display a halt signal and the barriers are closed, before the monitor signal provides a proceed signal
to the train conductor. After the train has passed the crossing street and exited the block section of the
level crossing, the level crossing is again released (Release): All signals are switched off and barriers
are opened and the road traffic is re-allowed to (safely) pass the level crossing.

Initialization
Before the cyclic behavior of Fig. 12.20 can be executed, the level crossing system, and therefore all
of its subcomponents, must be initialized. The reader is referred to Fig. 12.21, where the initialization
is visualized via a use case diagram.7 The initialization includes the execution of a built in self-test of
the traffic lights, as well as a built in self-test of the monitoring signal. After these self-tests have been
completed successfully, the lights of the signals at the level crossing (traffic light(s) and monitoring
signal) have to be turned off. Additionally, after the built-in self-tests of all traffic lights and the
monitoring signal were confirmed, the barriers have to be brought to an open position. Thereafter, the
level crossing system will change its state from Initialized to Released (see Fig. 12.20).

Safeguarding
Every time a train is approaching and detected by the level crossing system to have entered its block

6Unified Modeling Language — http://www.omg.org
7These information can also be withdrawn from the state machine diagram in Fig. 12.20.
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Figure 12.20: Abstract state machine model of the level crossing system.

Figure 12.21: Use case of the use-requirement initialization of level crossing.
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section, a safe passage of the train must be guaranteed. Hence, the train traffic must be protected from
the road traffic and vice versa. Therefore, the traffic lights must indicate a stop/halt signal to the road
traffic and the barriers have to be closed. At least, if all traffic lights indicate the stop/halt signal, the
minimal precondition(s) for a safeguarding of the level crossing have to be fulfilled. As a result, the
monitoring signal of the level crossing can signal the conductor that he is allowed to pass the level
crossing by turning the light of the monitoring signal on (proceed signal).

With respect to the safeguarding, preconditions and timing issues are: Before a stop/halt signal
(red light) can be indicated by the traffic lights, the traffic light must first switch to a warning signal
(yellow light) and must hold this yellow light 3 seconds before turning it off and switch to the red
light. Only if all traffic light instances provide a stop/halt signal to the road traffic, the monitoring
signal is allowed to display a proceed signal for the train traffic. As well, twelve seconds after the
traffic lights are signaling the stop/halt signal the barriers must be closed.

Figure 12.22: Use case of user-requirement safeguarding of level crossing.

The described situation is displayed in Fig. 12.19 and also in Fig. 12.22. The barriers and therefore
the closing of the barriers are of secondary importance, i. e., they are an additional physical obstacle
but not necessary for a safeguarding of the level crossing. The safeguarding by the traffic lights and
the monitoring signal is considered as sufficient. Anyway, a feedback for the closing of the barriers
is required by the level crossing system: Within 6 seconds after the closing of the barriers has been
initialized a feedback is expected at latest. To verify that the barriers have closed within the fixed time
frame, a timer is started and a sensor gives the necessary feedback. The kind of feedback and for what
it is used for will be regarded later in this section when introducing the dysfunctional behavior.

Release
After all signals have switched to the right signal and the barriers have closed, the train can safely
pass the level crossing. If the train left the block section of the level crossing, it is no longer necessary
to prevent the road traffic from passing the railroad. As a result, the detection of the train exiting
the block section of the level crossing will transfer the level crossing back into the unguarded state
Released (see Fig. 12.19). The corresponding use case is shown in Fig. 12.23. The release of the level
crossing includes the deactivation of both signal systems (traffic light system and monitoring signal
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system), as well as the opening of the barriers. As a matter of course, the monitoring signal has to
be turned off first, before the traffic lights can be switched off afterwards to communicate a proceed
signal to the road traffic.8

Figure 12.23: Use case of user-requirement release of level crossing.

Similarly to the use case of safeguarding, the position of the barrier is verified, that is, 6 seconds
after the opening of the barriers has been initiated, a feedback is expected indicating that the barrier
reached its opening position.

Dysfunction
A negative feedback or the absence of a feedback in the defined time interval of 6 seconds (concerning
the barrier) is interpreted by the level crossing system as a dysfunction. This is true for the opening, as
well as for the closing of the barriers. As mentioned before in paragraph Safeguarding, the barrier is
not necessary in the first place. But, if a dysfunction of a barrier is detected, it is stored, and after the
safeguarded state of the level crossing has been exited, the cyclic execution behavior of safeguarding
and release of the level crossing (system) will be left and a dysfunctional state will be entered (see
Fig. 12.20).9 The dysfunctional state is some kind of safe state for the overall system level crossing,
where all participants (road and railway traffic) are protected with respect to a collision.

Other subsystem-components can also cause a dysfunction. As depicted in Fig. 12.24, a not suc-
cessfully completed built in self-test of a traffic light or a monitoring signal is interpreted as a dys-
function. As well, there is a time frame of 240 seconds for trains entering the block section of the
level crossing. If that time frame is violated, that is, if exiting of a train is not detected by the axle
counter subsystem 240 seconds after the entering of the same train has been detected, it is interpreted
as a dysfunction. Sooner or later the detection of a dysfunction will lead to the overall safe system
state (Fig. 12.19: Dysfunction), where all signals (traffic lights and monitoring signal) are shut-down,
and the barriers, as the case may be, are opened. This allows the road traffic to safely pass the level
crossing, as no train is allowed to cross.

8A proceed signal of a traffic light conforms to a traffic light where all light (yellow and red) are turned off.
9The reader is referred to Fig. 12.19, where the dysfunction of a barrier is stored in the variable barrierFail. If this

variable will be set to true, finally the state Dysfunction will be reached, where no train can pass the level crossing to protect
the road traffic participants.
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Figure 12.24: Use case of user-requirement dysfunction of level crossing.

12.2.2 System architecture

The architecture of the system is displayed in Fig.12.19. Each of the displayed modules (e. g. traf-
fic light or axle counter) is a synchronous component implemented in SCADE. The solely syn-
chronous components are connected via a communication infrastructure in an asynchronous envi-
ronment (see Fig. C.2 of appendix C10). The bright yellow components displayed in Fig. C.2 are the
solely synchronous system parts of the overall asynchronous system architecture. These synchronous
subsystem-components are connected to each other by an asynchronous communication infrastructure
(represented as wires) to exchange data via their defined input and output interfaces.

As a result, the overall architecture is a so called GALS architecture specified as system of
systems, as described in Sec. 1.1. Some of synchronous components are connected directly (e. g.
StrassenSignal and UeberwachungsSignal), but in the majority of cases the components are con-
nected indirectly via the controlling system component BahnUebergangsSteuerung (the automatic
control system). As can be seen in Fig. C.2, not all interfaces of the synchronous components have a
connection to other subsystem-components. They have been left unconnected:

• to be able stimulate the model or some of its subcomponents, and

• to observe outputs for the interpretation of results.

Input interfaces are generally used for providing stimuli that in most cases replace and simulate hard-
ware parts. For example the input interface UmgebungZug replaces the hardware detection points of
the axle counter system, i. e., the interface is an abstraction or rather a simulation of the axle detection
point hardware. The same is true for the hidden interfaces that are located at the synchronous com-
ponents: E. g. AZRTestGestoert is the abstraction of the built in self-test of the axle counter system
component simulating the hardware. The Boolean input stimulus can simulate a successful or failed
built in self-test of the system component.

For the verification it is necessary to interpret and observe the system behavior. As a result,
additional output interfaces have been implemented in the model of the synchronous components.
For example UmgebungZugAnachB is used to be able to observe the behavior of the component

10Due to space, some figures and tables have been located outside this section. The figures and tables of the Case Study
Level Crossing is located in appendix C.
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StrassenSignal (traffic light) or the overall system behavior (level crossing), respectively, and there-
fore what is communicated to the road traffic participants. Similar the output interface UmgebungZug
has been implemented for the synchronous component UeberwachungsSignal (monitoring signal) ob-
serving the commitment to the train conductor. Input and output interfaces are used as a kind of
black-box-view of the system and to specify test-cases. More detailed information about specifying
LTL test-cases using input and output interfaces are given in Sec. 5.

12.2.3 SCADE Models of System Components

Tokens, exchanged by the synchronous components via the asynchronous communication infrastruc-
ture, are in the majority of cases enumerations. Only some interfaces are Boolean typed. The used
non-Boolean data types are listed in Tab. C.1 located in the appendix C of this document.

The first eight data types listed in Tab. C.1 (<identifierName>Kommando,
<identifierName>Zustand) are used to broadcast the state of the corresponding subsystem to other
subsystem-components of the system, or to communicate directives to it. For example the component
UeberwachungsSignal (monitoring signal) has an interface of type TUeberwachungKommando and
another interface of type TUeberwachungZustand. The interface typed TUeberwachungKommando is
an input interface and used to receive directives from the automatic controller subsystem, that is, the
subsystem BahnUebergangsSteuerung. If a signal UeberwachungTest of type TUeberwachungKo-
manndo is received, it is used as a directive to trigger the execution of the built in self-test for
the subsystem-component UeberwachungsSignal. On the other hand, the output interface of
UeberwachungsSignal typed TUeberwachungZustand provides information about the state of the
subsystem UeberwachungsSignal. For example, if the built in self-test has successfully been finished,
the signal TestOB will be forwarded via the interface of type TUeberwachungZustand to outside.

The other last four data types, listed in Tab. C.1, are data types that are either used to simulate
hardware (the axle counter detection points, coexisting hardware of the submodule the software is
located at etc.), to simulate manipulations from outside (service interfaces), or used to communicate
the state of the system (a la black-box) by interfaces to outside. The latter has already been described
in the last two paragraphs of Sec. 12.2.2.

In the following paragraphs, the implementation of the level crossing as a system of system will
be introduced. The description is provided component by component and is guided by the description
of the user requirements provided in Sec. 12.2.1.

BahnUebergangsSteuerung (Controlling system unit)
The component BahnUebergangsSteuerung is the heart of the GALS system, as it includes the logic
of the level crossing system and is responsible for the overall system functionality, introduced as user
requirements in Sec. 12.2.1. As a result, there exists two interfaces (one input and one output interface)
for each existing subsystem-component of the level crossing system used for the exchange of data.
Fig. 12.25 provides an overview of the subcomponent BahnUebergangsSteuerung and its provided
(output) and required (input) interfaces. In addition to this, an overview of the types and the signals
of the provided and required interfaces are given in Tab. C.2 and C.3 (appendix C). For each instance
of the included subsystem-components of the level crossing, an input respectively an output interface
can be identified. If more than one instance of the same component is part of the overall system model
(e. g. the barrier or the traffic lights), these inputs are combined to a vector.

Generally, output interfaces of the subcomponent BahnUebergangsSteuerung are used to control
and forward instructions to the other subsystem-components of the level crossing system. The possi-
ble instructions are communicated via signals. With the directives, listed in Tab. C.3, the submodule
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Figure 12.25: Subcomponent BahnUebergangsSteuerung including provided and required interfaces.

BahnUebergangsSteuerung tries to enable a faultless execution. This also includes that the system
is conveyed to a safe state, if a malfunction occurs. To verify that instructions have been executed
correctly, and to be able to calculate necessary instructions for the further execution steps, feedback
information are received via the input interfaces (listed in Tab. C.2). These input interfaces receive
state information about the other subsystems of the level crossing, as described in the second para-
graph of Sec. 12.2.3. For example ZustandAZR requires and is provided with information about the
state of the submodule AchsZaehlRechner, ZuststandSchranke requires respectively is provided with
state information of submodule Schranke and so on.

Disregarding hidden inputs, there only exists one visible (not hidden) input interface which did
not receive state information from another subsystem-component of the level crossing system model:
EntsicherungVomServicePersonal. This interface has been implemented to reset the subsystem com-
ponent BahnUebergangsSicherung, that is, if any malfunction or disturbance has arisen and the sub-
system has fall back to a safe state, it can be restored to its initial state (see Fig. 12.21) via the service
interface by the authorized service staff. The interface is not listed in Tab. C.2, as it is simply Boolean
typed. If it is true, the subsystem is restored to its initial state.

The component BahnUebergangsSteuerung is at the top level and can be further decomposed.
The result of decomposition can be regarded in Fig. 12.26, where three main states can be identified:

• InitialisierungBahnuebergangskomponenten,

• NormalbetriebBahnuebergang and

• StoerungBahnuebergang.

The state InitialisierungBahnuebergangskomponenten is responsible to realize the initialization, as
discussed in the paragraph Initialization of Sec. 12.2.1 and figured out as use case in Fig 12.21. The
state NormalBetriebBahnuebergang controls the cyclic behavior as described in paragraphs Cyclic
execution behavior, Safeguarding and Release of Sec. 12.2.1 and realizes the user requirements Safe-
guarding and Release, displayed in Fig. 12.22 and 12.23.
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The last state, that is, state StoerungBahnuebergang implements the user requirement dysfunction,
as it is described in paragraph Dysfunction of Sec. 12.2.1. For the corresponding use case description,
the reader is referred to Fig. 12.24. The states InitialisierungBahnuebergangskomponenten and Nor-
malBetriebBahnuebergang again include a deeper hierarchical structure and can therefore be further
decomposed.

Figure 12.26: Three main states of the subsystem-component BahnUebergangsSteuerung.

Initialization
Decomposing the state InitialisierungBahnuebergangskomponenten means to decompose the included
node of the state InitialisierungBahnuebergangskomponenten. The implementation rejected by the de-
composition of the node InitialisierungAngeschlossenerSubkomponenten leads to the implementation
of Fig. 12.27. For each subsystem-component instance in the overall GALS system level crossing,
there exists node responsible for: The initialization of the component instance and the validation of a
successful initialization of the corresponding subsystem.

Concerning the functional behavior, as defined by the user requirements (see Sec. 12.2.1, para-
graph Initialization, Fig. 12.20, and Fig. 12.21), the build in self-test of the subsystem-components
traffic light(s) (instances of StrassenSignal), monitoring signal (UeberwachungsSignal) and the axle
counter system (AchsZaehlRechner) must be initiated. After a responds of a successful self-test ex-
ecution, the subsystem-components must be brought to their corresponding initial state, that is, the
lights of the traffic light(s) as well as the monitoring signal are turned off, and the barriers are brought
to an open position.

Figure 12.27: Initialization-nodes for the subsystem-components of the level crossing system.

The initialization of the subsystem-components takes place inside the nodes displayed in
Fig. 12.27 (InitialisierungAchazaehler, InitialisierungSchranke, InitialisierungStrassenSignal etc.).
The implementations which is located inside these nodes are quite similar. Generally, there are dif-
ferences regarding the used data types of the signal that is received from or send to the corresponding
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subcomponent of the level crossing system and used for calculation. An example is given in Fig. C.1
in appendix C: Regarding the upper and lower implementation model, only slightly differences can be
identified. First, the communication between the corresponding subcomponent is handled by differ-
ent type of signals. Second, the component AchsZaehlRechner is additionally in an error-state, if the
block section is occupied by a train before the initialization phase has not yet been finished. Contrary,
in the implementation model of the monitoring signal, only a failed execution of a build in self-test is
interpreted as an error.

For the reason of similarity and to avoid too much redundancy regarding the implementation
of the nodes depicted in Fig. 12.27, only node InitialisierungUeberwachungsSignal (the monitoring
signal depicted in the upper synchronous implementation model of Fig. 12.27) is introduced. The
other nodes can be derived from the SCADE model and the following description of InitiierungUe-
berwachungsSignal. As required, signal UeberwachungTest is being emitted to the subcomponent
UeberwachungsSignal (see Fig. 12.19) to trigger the build in self-test. If the signal has been emitted,
the sub-node InitialisierungUeberwachungsignal waits for a response that may either be positive (Ue-
berwachungTestOB) or negative (UeberwachungGestoert). The response is validated by the imple-
mented SCADE state machine displayed in Fig. C.1. In case the built in self-test has been successfully
executed, the implemented state machine Validation will change its state from Testaufruf to Erfol-
greichAbgeschlossenerTestUndInitiierung. If not, that is, the signal TestGestoert is received, state
machine Validation changes state to TestaufrufFehler. For the latter case, the result of a failed initial-
ization is forwarded to the outside of the node, i. e., to the implementation displayed in Fig. 12.26,
leading to a change of states from InitialisierungBahnuebergangskomponenten to the state Stoerung-
Bahnuebergang (for a detailed description see paragraph Dysfunction below in this section). Oth-
erwise, if a positive feedback is received (TestOB), the initialization phase will proceed: The signal
UeberwachungInit is emitted to the subsystem-component UberwachungsSignal (monitoring signal).
UeberwachungIint should have the effect that the signal light of the UeberwachungsSignal is turned
off. After receiving an acknowledgment that the light of the monitoring signal has been turned off,
the initialization of the level crossing system is successfully finished.

If all subcomponents successfully execute their initialization, validated by the implementation
depicted in Fig. 12.28, the result is forwarded to outside to the state machine implementation of
Fig. 12.26, leading to a change of state from InitialisierungBahnuebergangskomponenten to the state
NormalbetriebBahnuebergang.

Figure 12.28: Validation of an overall successful validation of the level crossing system.
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Released
If the state NormalbetriebBahnuebergang has been reached, the level crossing system is in the initial
state Released (see Fig. 12.20) and the automatic control system (BahnUebergangsSteuerung) has to
enable the cyclic execution behavior described in paragraph Cyclic execution behavior of Sec. 12.2.1.
Basically, the cyclic execution behavior is realized by the implementation depicted in Fig. C.3 (ap-
pendix C) which is located inside the node BahnUebergangssteuerungsNormalbetrieb of state Nor-
malbetriebBahnuebergang (see Fig. 12.26). The implementation model is described as a SCADE

state machine and has been kept similar to the state machine description of the requirement section
(Sec. 12.2.1, Fig. 12.20). The state Release of Fig. 12.20 corresponds to the initial state Entsichert of
Fig. C.3. In the state Entsichert all subsystem-components of the level crossing maintain their states
(e. g. the barriers are kept open, the lights of the monitoring signal and the traffic lights are remained
switched off etc.). As required, only the build in self-tests are periodically executed respectively in-
voked. The corresponding implementation can be seen in Fig. 12.29. From now on, the depicted
implementation of Fig. 12.29 is called the default implementation model of the corresponding sub-
module instance, the signal should be communicated to. For example the default implementation
model for the StrassenSignal (traffic light) is the one which is located at the upper left corner.

Figure 12.29: Implementation to periodically emit signal for executing build in self-test of traffic light.

As the default implementation models are implemented in equal manner, a generic explanation
for the default implementation models displayed in Fig. 12.29 will be given. As long as no train is
detected to enter the block section (see outgoing transition of state Entsichert in Fig. C.3 on page
199) of the level crossing, the default neutral placeholder signal <identifierName>KeinKommando is
emitted to the corresponding (<identifiereName> : UeberwachungsSignal, StrassenSignal, Schran-
ke, AchsZaehlRechner) subsystem-component (see also Fig. C.2 in appendix C). The placeholder sig-
nal is periodically interrupted after ZeitintervalTestabfrage<identifierName>11 instants by the signal
<identifierName>Test, invoking the build in self-test. Caused by the fact that the subsystem Schranke
did not have any build in self-test, the default implementation model is quite different: Solely signal
SchrankeKeinKommando is communicated to the barrier at each logical instant. Again the described
implementation can be found in Fig. 12.29.

11An integer constant used to determine the number of logical instants. The squared snipes of Fig. 12.29 displays the
implementation of the specified time interval.
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Safeguarding
Thus, a change of state from Entischert to Sichern1 will occur (see Fig. C.3), if the controlling unit
(BahnUebergangsSteuerung) receives a signal from the axle counter system, indicating that a train
has entered the block section of the level crossing (ZustandAZR = AZRBelegt). As required (see
Sec. 12.2.1) the controlling unit commands the traffic light component StrassenSignal to safeguard the
railway road (StrasseSichern), which is implemented in the node NormalbetriebSichern1 displayed
in state Sichern1 in Fig. C.312. The implementation of the node NormalbetriebSichern1 is partly
represented in Fig. 12.30 regarding the control of the traffic light instances.

Figure 12.30: Safeguarding the level crossing by indicating traffic light(s) to switchover to a stop
signal

At the first instant where the state Sichern1 gets activated, the included node NormalbetriebSich-
ern1, and therefore the implementation model of Fig. 12.30 emits the signal StrasseSichern. The
signal is broadcast to the traffic light subsystem-component. If the signal is received by a traffic light
instance, the component starts safeguarding the railroad traffic switching the correct lights (for short:
the traffic lights get activated by turning on the yellow lights before switching to the red lights). After
the StrasseSichern signal has been sent, only signal StrasseKeinKommando is emitted, again periodi-
cally interrupted by the emission of the signal StrasseTest. The implementation regarding the emission
of signals to the other subsystem-components is realized by the default implementation models intro-
duced in paragraph Released (see also Fig. 12.29).

As long as no dysfunction is reported or existing instances of StrassenSignal (traffic light) did
not acknowledge displaying a stop signal, the state Sichern1 is kept. This also corresponds to the
user requirements introduced in Sec. 12.2.1 and displayed in Fig. 12.20 and 12.22. Disregarding a
dysfunction, a change of state is performed, if and only if all instances of traffic light components of
the overall level crossing system acknowledge displaying a stop signal. As a result, the state Sichern2
will be reached (see Fig. C.3).

Up to now, regarding the requirements introduced in Sec. 12.2.1, neither the monitoring signal nor
the barrier is in the right state (with respect to a safeguarded level crossing). The implementation for
actuating the component monitoring signal is depicted in Fig. 12.31. As described by the use cases
of Fig. 12.20 and 12.22, it must be ensured that the traffic light(s) display a stop signal before the
monitoring signal gets activated. If not, train traffic and road traffic is allowed to pass the level crossing
at the same time which may cause an accident. To avoid that a proceed signal is simultaneously
displayed by traffic lights and the monitoring signal, the upper implementation model of Fig. 12.31
is used. The variable AlleStrassenSignaleAufHalt results in a Boolean value true, if and only if the
traffic light components communicate to the automatic control system to display a stop signal and did
not change their state of displaying it. Only if the latter is ensured, the monitoring signal is invoked to

12A detailed description of the switchover of the traffic light invoked by the signal StrasseSichern will be given in para-
graph Component StrassenSignal (traffic light)
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Figure 12.31: Implementation to ensure traffic light(s) displaying stop signal..

change to display a proceed signal for the train.
As mentioned before, the state of the barriers must be manipulated by the automatic control sys-

tem. Twelve seconds after the traffic lights have been turned on, it is required (Safeguarding in
Sec. 12.2.1) that the barriers should start to close down. This is implemented in the SCADE state
machine depicted in Fig. C.3. The transition between Sichern2 and Sichern3 implements the times
operator (ZeitintervalSchrankenschliessungLogischeEinheiten times true) where the constant Zeitin-
tervalSchrankenschliessungLogischeEinheiten defines the number of cycles of the synchronous com-
ponent that are equivalent to twelve seconds in the real world (see introduction of SCADE in Sec. 2.1:
Multiform of time). The implementation of the node NormabetriebSichern3 in state Sichern3 is again
equal to the default implementation model already introduced in Fig. 12.29. The reader is referred
to paragraph Release. As the barrier should close down, the implementation for emitting signals
to Schranke (barrier) differs. Before the placeholder signal SchrankeKeinKommando is emitted, the
signal SchrankeSchliessen is communicated at the first instant, in which the state Sichern3 is active.
The corresponding implementation is displayed in Fig. 12.32, which should invoke the closing of the
barriers.

Figure 12.32: Implementation for emitting signal to close down barrier.

If the monitoring signal (the instance of component UeberwachungsSignal) acknowledged that it
has been turned on, i. e., a proceed signal is displayed, and the barriers have been closed down13 a
state change from Sichern3 to Gesichert is performed (see Fig. C.3 in appendix C). This corresponds
to the state Safeguarded of the state machine in Fig. 12.20.

13Alternatively the time span between the signal emitted to close down the barriers and present is greater then six seconds.
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Safeguarded
In the state Gesichert (see Fig. C.3) the inside located node NormalbetriebGesichert again includes the
default implementation models, as visualized in Fig. 12.29. These implementation models are periodi-
cally executed, as long as no subsystem-component indicates an error (ZustandAZR = AZRGestoert or
...), the axle counter component detects and communicates that the train did exit the block section of
the level crossing (ZustandAZR = AZRFrei), or more than 120 seconds have passed since an entering
of a train in the block section of the level crossing has been detected but yet not the exiting (Fig. C.3:
Transitions with guards EntscheidungGetroffenBlockabschnitt and not ErgebnisBlockabschnitt). If
one any of the latter two conditions is fulfilled, the level crossing system must be released.

Release
For the release of the level crossing system, the controlling system unit must suspend the monitoring
signal by emitting the signal UberwachungEntsichern to the monitoring signal subsystem-component
(see Fig. 12.33). After the monitoring signal has been turned off, the traffic light instances must also be
suspended, to allow the road traffic to pass the crossing. The suspension of the traffic light is realized
by the automatic control system by sending the signal StrasseEntsichern (see also Fig. 12.33). At
least, the physical obstacles must be removed by reopening the barriers. As can be inferred from the
SCADE state machine from Fig. C.3, the release of the level crossing system is implemented by two
succeeding states: Entsichern1 and Entsichern2 and their nodes located within. The implementation
of node NormalbetriebEntsichern1 located within state Entsichern ensures that the monitoring signal
is turned off. After the acknowledgment has been received that the monitoring signal stops to display
a proceed signal, the traffic lights are turned off to stop displaying a halt signal. The corresponding
implementation can be regarded in Fig. 12.33

Figure 12.33: Implementation of the suspension of signals in state Entsichern1.

Presupposed that all instances of the traffic lights as well as the monitoring signal have been turned
off, the change of state to Entsichern2 is performed. In state Entsichern2 the last necessary step is
executed, i. e., the barriers are invoked to open. The implementation is presented in Fig. 12.34. As
before, all other implementations are realized by the default implementation depicted in Fig. 12.29.

If no error is reported from any subsystem-component of the level crossing system and the com-
plete opening of the barriers have been verified, the release phase is enclosed and the transition to the
state Entsichert (released) is performed.
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Figure 12.34: Implementation of the reopening of the barrier in state Entsichern2.

Dysfunction
A dysfunction of the level crossing occurs, if:

• any of the existing subsystem indicates an error to the automatic control system, or

• a timeout concerning the responds time of acknowledgment is detected.

An error may be detected by the subsystem-components, by the execution of the build in self-test. In
either case, the success or the failure is forwarded to the automatic control system. The automatic
control system validates the returned messages, and if necessary, establishes a safe state of the overall
system (see incoming transitions of state Gestoert in Fig. C.3 and Fig. 12.26). The automatic control
unit also checks and validates necessary timeouts. For example the barrier that must be closed or
opened within a time frame of six seconds after the corresponding command (SchrankeOeffnen or
SchrankeSchliessen) has been sent from the automatic control system. If timeouts are exceeded (see
also incoming transitions of state Gestoert in Fig. C.3), the system will fall back to the defined safe
state.

In the safe state the monitoring signal is turned off (halt/stop signal). As no train is allowed to
pass the level crossing, if a halt signal is displayed by the monitoring signal, it is now possible to
allow the road traffic participants to go across. Therefore, also all traffic lights are turned off (which
is equivalent to a proceed signal) and the barriers are reopened. The level crossing is now in a safe
state, where at least the road traffic is maintained.

Component AchsZaehlRechner (axle counter system)
As can be seen in Fig. 12.35, first the build in self-test must be invoked and successfully be finished,
before axle counter system can be initiated from outside. After initialization, the axle counter system

Figure 12.35: Implementation model of the axle counter system.

reacts to inputs from the detection points (interface UmgebungZug). If a train is detected to enter or to
leave the block section of the level crossing, the information is transformed to a signal and forwarded
to the automatic control system (signal AZRFrei or AZRBelegt). At any time, further build in self-tests
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can be invoked from outside. If the self-test can successfully be finished, the system returns to its
general behavior of forwarding occupation information of the level crossing block section. If not,
the system performs a change of state from Aktiv to Gestoert and an error message (AZRGestoert)
is communicated to the automatic control system. The same is true for the execution of the build
in self-test in the initial state (Uninitialisiert of the axle counter system, where a change of state is
performed from the state Uninitialisiert to the state Gestoert

Component StrassenSignal (traffic light)
The implementation model of the traffic light is depicted in Fig. 12.36. Again the subsystem-
component must have execute a successful build in self-test before the traffic light component can
be initialized. If the self-test fails, the state of the system changes from Uninitialisiert to Gestoert,
an error message is communicated the automatic control system and the lights of the traffic lights
are switched off (see paragraph Dysfunction). The build in self-test can be executed at any time if
invoked from outside, except for the case that the traffic light is in the state Gestoert. If the self-test
was successful, the traffic lights can be initialized (StrasseInit), where all lights are switched off.

Figure 12.36: Implementation model of the traffic light.

If invoked from outside by the signal StrasseSichern, the traffic light can be switched on (Kom-
mando = StrasseSichern), that is, first the yellow lights are switched on (state RotAusGelbAn), before
after three seconds (implemented by the transition guard ZeitintervallUmschaltungStrassensignal-
RotAusGelbAnNachRotAnGelbAus times true) the red light are switched on and the yellow light is
switched off (state RotAnGelbAus). By the command StrasseEntsichern of the automatic control
system, the traffic lights can regularly be switched off to allow the road traffic to pass the level cross-
ing. As required in paragraph Release of Sec. 12.2.1, the monitoring signal must therefore provide a
halt/stop signal. This is ensured by the label Kommando = StrasseEntsichern and Uberwachungssig-
nalAusgeschaltet of the incoming transition of state RotAnGelbAn, where UberwachungssignalAus-
geschaltet ensures that the monitoring signal has been switched off, before the traffic lights can be
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turned off to display a proceed signal.

Component UeberwachungsSignal (monitoring signal)
Again, a successful build in self-test must be invoked and performed before the monitoring signal can
be initiated. As usual, a failed execution would lead to an error message, communicated to outside.
As a consequence, the monitoring light is switched off to prohibit trains passing the level crossing,
which is necessary to protect the road traffic participants.

Figure 12.37: Implementation model of the monitoring signal.

A successful test and an additional initialization invoked from the automatic control system,
leads to the state Normalbetrieb of the monitoring signal, where the reception of the signal Ue-
berwachungSichern causes that the light of the monitoring signal to be switched on respectively
the reception of the signal UeberwachungEntsichern causes the light of the monitoring signal to be
switched off. The described behavior holds as long, as no error is detected, that is, the periodically
invoked build in self-tests are successfully executed and no traffic light is simultaneously switched on
(see outgoing transitions of state Normalbetrieb).

Component Schranke (barrier)
The implementation model of the barrier is displayed in Fig. 12.38. A barrier can either be not initial-
ized (Uninitialisiert), opened (Geoeffnet), closed (Geschlossen), faulty (Gestoert) or undefined (Zus-
tandUnbekannt). The latter is used to describe the state of the barrier when invoked to open or close
but not yet finished. The initial state is as usual the state Uninitialisiert. Contrary to the descriptions
of the subsystem-components above, no build in self-test is implemented in the subsystem-component
and can therefore be executed. It is sufficient that the barrier is brought to an initial (open) position,
by communicating the signal SchrankeInit. As depicted in Sec. 12.2.1, the opening of the barrier must
take place in a time frame of six seconds. The time frame to open the barrier is validated by a timer
implemented inside the state ZustandUndefniert. If the elapsed time is greater than the defined time
frame, a change of state to Gestoert is enforced (transition labeled with NichtImZeitfenster). Other-
wise, a sensor (implemented as a hidden input interface) indicates the complete opening of the barrier,
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enforcing a change of state to Geoeffnet. The barrier can be controlled from outside by communicating
the signals SchrankeSchliessen to close the barrier, and the signal SchrankeOeffnen to open it.

Figure 12.38: Implementation model of the barrier.

Every time the barrier is invoked to be closed or to be opened, a state change to ZustandUndefiniert
is performed and the implemented timer to observe the defined time frame is restarted. At the end, ei-
ther the sensors of the barrier acknowledge the opened or closed position inside the defined time frame
and perform a corresponding change of state to Geoeffnet or Geschlossen. Or, due to elapsed time, a
change of state to Gestoert is triggered, which results in emitting an error message SchrankeGestoert
to outside.

The SCADE state machine <SM2> has been implemented to ensure that dates of the right sensor
are evaluated. If the barrier has been prompted to be closed, it has to be ensured that the sensor
validating the closure is validated and not the sensor for the opening of the barrier.

12.2.4 Model-checking GALS Systems on the Source Code Level

The top-goal of project VerSyKo is to make model-checking feasible and applicable for industrial
projects using GALS architectures. The VerSyKo approach is to make abstractions of synchronous
components and the asynchronous system architecture in order to manage the problem of state space
explosion.

Control applications in the railway domain can often be separated in a system control function and
a safety monitoring function. Those safety monitoring functions usually consist of low-complexity
algorithms, i. e. only few states. The level-crossing systems is an example of such a rather low-
complexity system. In order to evaluate the handling of GALS systems, we wanted to test whether
for such low-complexity systems it might be feasible to perform model-checking directly using the
SCADE models. Hence, industrial practioners could immediately benefit from using a model-checker
for low-complexity verification problems without further time- and cost-intensive modification or
search for suitable abstractions.

The following section reports on experience we have gained by model-checking GALS systems
and directly using the source code generated from SCADE models. The experiments have been con-
ducted partially in parallel to the conceptual work of sections 5 to 6 in order to understand the practical
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implications of the GALS problems in an industrial case study. The experiments served as an early
feed-back and experience and results contributed to the conceptual work of VerSyKo.

At first we will give a description of our approach for model-checking on the source code level
using SPIN and SCADE. Then follows a short introduction of how to integrate C-code into PROMELA

models for the SPIN model checker. We will discuss modeling of synchronous components, the
asynchronous environment, communication and scheduling. Thereafter, we will describe the technical
details of integrating SCADE models into SPIN verification. The next part deals with experiments
using the level crossing or parts thereof. The last part of this section summarizes the outcome of the
experiments and explores possible problems of this direct source-code based approach.

Code-level Verification of GALS Systems
Code-level verification means to apply model-checking directly on the source-code which will be used
for the production system rather than to take an abstraction of the system’s behavior. This approach
implicates several main advantages: (1) the code can be taken as is and does not require any modi-
fication, (2) which guarantees the relevance of the verification results for the target system, and (3)
therefore raises the value for the assurance and certification of systems, especially for safety relevant
applications. Several approaches particularly for model-checking of SCADE-models integrated with
SPIN or other model-checkers have been discussed in the Related Work section 1.3.

For the following experiments we have chosen to follow a procedure similar as in section 7.2.1:

1. The local synchronous components are defined as SCADE models. The SCADE code generator
is used to produce C-code from the components. The model of the level crossing control serves
as a running example.

2. SPIN allows to integrate C-code directly in PROMELA models which is automatically woven
into the generated model-checker. For each generated component a wrapper component in
PROMELA has to be provided which calls the generated C-code.

3. All components are integrated to a GALS architecture which includes a model of communica-
tion, scheduling of components and also a model of the environment.

4. The verification goals for the integrated GALS system are stated as LTL formulas. The LTL
formulas are derived from the User Requirements Specification which covers the required be-
havior as seen from the external system interfaces. Additionally, scenarios can be formulated
to check whether the system behaves as expected.

PROMELA-Wrapper for Scade-Models
The purpose of the PROMELA wrapper is to provide a pattern for systematical integration of C-code
generated from SCADE models. For each instance of a component in the system architecture, an
instance of PROMELA’s proctype has to be defined (similar to Section 7.2.1).

The code generator from SCADE produces several artifacts from the model. One artifact is a
structure describing the state variables of a component which also includes the outputs of a com-
ponent. The structure’s name carries the prefix “outC ” followed by the operator name (here
‘outC UeberwachungsSignal’).

At first, the wrapper includes the declaration of component. This is realized using the c_decl
statement in PROMELA.
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1 c dec l {
2 # i n c l u d e <UeberwachungsS igna l . h>
3 }

Listing 12.6: Inclusion of Scade operator declations

Next, the state variables of the generated component have to be declared. The c_state statement
includes a variable of type “outC UeberwachungsSignal” in the state vector of the generated model-
checker. The variable is declared to be a global variable of the PROMELA model. In C-code it can be
accessed via now.UeberwachungsSignal_ctx where now allows to access all global variables
of the current state of the model-checker.

1 c s t a t e ” outC UeberwachungsSignal UeberwachungsS igna l c tx ”

Listing 12.7: Declaration of state variables

The second and third artifacts produced by the SCADE code generator are C-functions which
implement the dataflow processing of the SCADE operator representing the synchronous component.

The first function is named like the operator and is prefixed with “ reset” (‘UeberwachungsSig-
nal reset’). The “Reset” function expects the state variable as an argument and sets the variables and
state of the operator to the initial dataflow values.

The second function is named like the operator (here ‘Ueberwachungssignal’) and implements the
synchronous dataflow behavior, respectively the state transition function. It expects the list of input
variables of the operator as first arguments and the state variable as its last argument. The generated
function only operates on its state variables. Hence, it can be integrated without modification into
PROMELA models using the c_code expression.

1 proctype PUeberwachungsSigna l ( )
2 {
3 c code{
4 U e b e r w a c h u n g s S i g n a l r e s e t (&now . uebSig c tx ) ;
5 UeberwachungsS igna l (
6 now . s t r S i g 1 . Zustand1 ,
7 now . s t r S i g 1 . Zustand1 ,
8 now . s t r S i g 1 . Zustand1 ,
9 now . s t r S i g 1 . Zustand1 ,

10 now . uebSigKommando ,
11 &now . uebSig c tx ) ;
12 } ;
13 do

Listing 12.8: Initialization of the state variables

During the first execution step of the wrapper process, the state variable is reset to the initial values
defined in the SCADE operator. Then the cyclic function of the operator is called once. After that the
wrapper cyclically calls the operator’s functions. The c_code statement guarantees uninterrupted,
atomic execution of the C-code inside.

1 do
2 : : c code{
3 UeberwachungsS igna l (
4 now . s t r S i g 1 . Zus tand1 ,
5 now . s t r S i g 1 . Zus tand2 ,
6 now . s t r S i g 1 . Zus tand3 ,
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7 now . s t r S i g 1 . Zus tand4 ,
8 now . uebSigKommando ,
9 &now . uebSig c tx ) ;

10 } ;
11 od ;
12 }

Listing 12.9: Cyclic execution of the synchronous model

We have seen that the variables used here are defined in the C-code. PROMELA allows to
access and evaluate variables defined in the C-source for use whithin PROMELA-Models via the
c_expr{ c-code } operator.

Prerequisites
After modeling the synchronous components, one has to specify the asynchronous part of the system
architecture. In the beginning of project VerSyKo it was quite unclear what kind of asynchronicity
will be regarded and to what extent. During the experiments we found out that we have to take into
account and explicitly define the following aspects to model the asynchronous environment of the
synchronous components (cf. Sections 5 and 7):

Scheduling policy The scheduling policy defines the order of execution of each component and spec-
ifies how to handle the execution of parallel components. Hence, the results of the model-
checking strongly depend on the scheduling policy. The least restrictive scheduling policy
allows arbitrary execution of processes. SPIN implements an interleaving semantic, i.e. par-
allelism is simulated via interleaving atomic processing steps of all processes. Without any
scheduling policy or fairness constraints SPIN’s model-checker will evaluate executions of the
system where probably processes never get scheduled. If a property holds for a system, i.e., the
corresponding requirement holds, with the least restrictive scheduling policy it will also hold
for stronger policies, but little restrictions of scheduling usually implicate a larger state space
required to explore.

Time and Timing In order to verify timing properties, it is necessary to implement a notion of time.
Regarding the verification goals it has to be decided whether time is specified and checked as
dense time or discrete time. Dense time allows to specify timing values in a continous domain.
Discrete time has an underlying model of integral time steps. For verification of GALS sys-
tems we usually know values like worst-case execution time of the synchronous components.
Furthermore project VerSyKo aims at synchronous systems with a fixed cycle time. There-
fore, timing for locally synchronous components can be sufficiently modelled with discrete
time steps. On the system level, it depends on the asynchronous architecture and on the time
dependent properties to be verified.

Communication Within a GALS architecture the communication defines how the synchronous com-
ponents interact with each other and the environment of the system. In a real, physical system
the components are connected via physical media which are often controlled by a logical com-
munication protocol. The more details we model of the communication system the better will
be the results of the GALS verification. But more details also imply a larger state space of the
overall system which has to be handled.

System environment The system environment comprises a model of the real world beyond the
boundaries of the system. It is sufficient to model the aspects of the real world which will
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be recognised at the systems interfaces. A good model of the environment can help to reduce
the complexity of the verification problem. Often it makes sense to create several models of the
environment which address the context of certain requirements to be verified. The assumptions
of the environment can also be modeled in terms of the formal requirements, which resembles
the assume-guarantee approach for formal verification.

All aspects discussed above influence the verification process, the size of the systems which can be
handled and of course the robustness and validity and universality of the verification results obtained
during model-checking. The paramaters related to the above mentioned aspects can and have to be
adopted to the needs of a specific verification problem.

Model of the Asynchronous Environment
As mentionened in the introduction of this section, our goal was to initially gain some practical experi-
ence and evaluating the parameters and limitations of GALS verification. Therefore, we have decided
for a minimum realistic asynchronous environment.
Scheduling: Although properties sucessfully verified with a least restrictive environment, the no-
scheduling assumption seems to be too unrealistic. Furthermore, our own experiments showed that too
little assumptions can produce lots of false positives resulting from the fact that there exist schedulings
in which a component will never or extremely rarely be scheduled.

Because of the asynchronous nature of an asynchronous architecture, the correctness of a GALS
system could depend on the order of execution respectively order of incoming or outgoing messages
transmitted between components. A “non-deterministic round-robin scheduling” fulfills our needs to
model the uncertainty of when components read their inputs or set their outputs. Non-deterministic
round-robin scheduling means that there exists a cycle where all synchronous components will be
scheduled and the order of execution of each model is determined non-deterministically.

1 proctype P S c h e d u l e r ( ) {
2 do
3 : : SCH PUmgebung=1;
4 ( SCH PUmgebung==0) ;
5 ( SCH PUeberwachungsSignal ==0
6 && SCH PStrassenSignal 1 ==0
7 && SCH PSimBUESt==0
8 ) ;
9 d step{

10 SCH PUeberwachungsSignal =1;
11 SCH PStrassenSignal 1 =1;
12 SCH PSimBUESt=1;
13 } ;
14 od ;
15 }
16 proctype PUebe rwachungss igna l ( ) {
17 do
18 : : SCH PUeberwachungsSignal ==1;
19 / * e x e c u t e Scade model * /
20 SCH PUeberwachungsSignal =0;
21 od ;
22 }

Listing 12.10: A non-deterministic round robin scheduler

The listing above shows the PROMELA implementation of the non-deterministic round-robin
scheduler. For each process exists a flag—prefixed with “SCH ”. The scheduler synchronizes on
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all flags and then atomically schedules all processes for execution. The order of execution of the
processes is determined by the interleaving semantic of SPIN. A special process is the model of the
environment “PUmgebung” which is always executed in the beginning of a cycle.
Time: For our first experiments we did not explicitely model a concept of time, since there was
no need to verify time-dependent requirements. Nevertheless, the round-robin scheduling implies a
rather synchronous model of discrete time which would allow to specify timing properties on the base
of a scheduling cycle.
Communication: Connections and communication among the synchronous components whithin the
GALS architecture are modeled via shared variables. Shared variables provide a minimum model
of communication infrastructure compared to real world communication which often implies bus
systems (e.g. CAN) with dedicated arbitration strategies.

A process accesses the shared variables in the beginning and at the end of its cycle. The read and
write accesses will always be performed atomically. Situations, where one process reads an inconsis-
tent datum from a second component, represented by two or more shared variables are not modeled
here. Because of the selected scheduling policy consistency of input values resulting from more than
one component is not guaranteed, where consistency means that all input values of a component result
from the same scheduling cycle.
System environment: The basic usage scenario of the level crossing is where a train passes the level
crossing. Arrival, passage of the crossing area and leaving the level crossing are modeled to consume
some time because a realistic passage also does. This consumption of time has been introduced to
give the synchronous components some time (scheduling cycles) to react.

1 proctype PUmgebung ( ) {
2 do
3 : : SCH PUmgebung ; SCH PUmgebung- - ;
4 : : break ;
5 od ;
6 SCH PUmgebung ;
7 umgebungZug=cZugAbwesend ;
8 SCH PUmgebung- - ;
9 do

10 : : SCH PUmgebung ; SCH PUmgebung- - ;
11 : : break ;
12 od ;
13 SCH PUmgebung ;
14 umgebungZug=cZugVorhanden ;
15 SCH PUmgebung- - ;
16 do
17 : : SCH PUmgebung ; SCH PUmgebung- - ;
18 : : break ;
19 od ;
20 SCH PUmgebung ;
21 umgebungZug=cZugAbwesend ;
22 SCH PUmgebung- - ;
23 do
24 : : SCH PUmgebung ; SCH PUmgebung- - ;
25 od ;
26 }

Listing 12.11: System environment: a train passes the level crossing
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Verification goals
The verification goals for the level crossing case study are stated as LTL-formulas. We have divided
the verification goals in two sets: (1) LTL-formulas from User Requirements and (2) usage scenarios
to query additional properties of the system.

The first source of verification goals is the User Requirements Specification which describes the
intended behavior of the system. The given URS specifies the behavior as it can be observed at the
system boundaries.

Most of the requirements of the level crossing system are formulated as a scheme of conditions
and desired reactions of the system. Therefore, most of the requirements can be modeled similar to
the listing of UR03 below: Three seconds14 after the set of traffic lights shows the yellow light the
systems shall turn on the red light and turn off the yellow light.

1 l t l UR03 Stoppen des St rassenverkehrs {
2 a lways ( ( umgebungKfzX==cKfzRotAusGelbAn ) ->
3 ( ( umgebungKfzX==cKfzRotAusGelbAn )
4 u n t i l ( umgebungKfzX==cKfzRotAnGelbAus ) ) )
5 }

Listing 12.12: Stopping the road traffic

In order to get a coarse validation that the systems works as intended, we have also specified some
queries which represent typical scenarios, i.e. use cases of the system. The following listing shows a
LTL-formula which shall prove that the train will eventually be signalled permission to approach the
level crossing.

1 l t l S c e n a r i o F r e i g a b e {
2 a lways ( ( umgebungZug==cZugVorhanden ) ->
3 ( ( umgebungZug==cZugVorhanden && umgebungTfZug== c T f Z u g H a l t b e g r i f f )
4 u n t i l ( umgebungZug==cZugVorhanden && umgebungTfZug== c T f Z u g F a h r t b e g r i f f ) ) )
5 }

Listing 12.13: Scenario: train gets permission to approach

The goal for the experiments was to use LTL-formulas of the first User Requirements UR01-UR03
and several scenarios which were created in an ad-hoc manner including the above scenario.

First experiment: Verifiying the complete model
In a first attempt we wanted to apply the verification to the complete GALS model of the level crossing
case study. At first the system architecture was modeled in PROMELA according to the procedure
described above. The resulting PROMELA model consists of 13 processes: 9 SCADE components,
the environment, the scheduler, the LTL-Büchi-automaton, and SPIN’s init process. Fig. 12.39 shows
the automaton representation of the PROMELA process of the level crossing core controller.

The model-checker was generated with options: partial order reduction, graph encoding set to size
of state vector, state compression. The Version of SPIN used was 6.1.0 -- 4 May 2011. The
verfication was executed on an Intel Core i5 CPU M 560 with 2 cores running at 2.67GHz
with 4GByte main memory under MS Windows 7 (32-bit). The process of the generated pan model-
checker occupied 100% computation time on one of the cores.
Results: The size of the state vector was 1460 bytes. The average memory consumption was about
30 MBytes. After 3 days of continuous operation the experiment was aborted. Until that day a
verification depth of 75 was reached. The model-checker did not yield any error-trace.

14Timing is not considered here; only the order of execution.
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Figure 12.39: Automaton representation of the core controller generated by PAN

Analysis: Although, the average memory consumption was rather low it seems quite clear that the
size of the state vector (1460 Bytes) and the reachable state space which has to be explored is too
large. One reason might be the size of the original model which implements the User Requirements.
A closer look on the code generated by SCADE’s KCG reveales the resulting C-code is not optimized
for memory size and, of course, not optimized to serve as input for model-checking:

• SPIN represents all boolean and bit variables with exactly one bit in the state vector. SCADE’s
code generator generates int variables15 (32 bits) in C to represent boolean values.

• The KCG code generator produces the C-functions for each type of operator instantiated in the
SCADE model. If an operator T is composed of nested operator instances Si, the generated
state structure of operator T consequently contains variables of the state structures of the sub-
operators Si. If a nested operator produces an output which is directly routed to the output of
the top-level, KCG produces a copy of the output variable for each nesting-level.

On the one hand, the first experiment could not be sufficiently finished, but on the other hand
it helped to understand more of the difficulties in the application of formal methods on industrial
problems.

Second experiment: A minimal model
After the negative results of the first experiment, we decided to make a second attempt of source-
level model-checking. This time the size of the state vector should be reduced. Therefore, a minimal
sub-model of the level crossing case study should be used for model-checking.

15could be reduced to uint8 (8 bits)
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Figure 12.40: A minimal sub-model of the level crossing

The chosen sub-model consists of the traffic lights (‘StrassenSignal’) and the supervision signal
(‘UeberwachungsSignal’). Both components implement only a limited stateful behavior and they
interact with each other. That means that the size of the state vector should get smaller and the
minimal example also represents a small part of the asynchronous architecture (see Fig. 12.40).

Since the model was changed, another verification goal had to be chosen. The User Requirements
for both components require the traffic lights and the supervision signal to observe each other such
that not both road traffic and trains may be signalled permission to approach the level crossing. One
direction of the requirement can be formalized as follows:

1 l t l Scenar io Niemals Ueberwachungss igna l und nich t KfzRot {
2 a lways ( umgebungTfZug== c T f Z u g F a h r t b e g r i f f ->
3 umgebungKfzABr==cKfzRotAnGelbAus )
4 }

Listing 12.14: LTL-formula: train permission to approach implies road vehicles must stop

Both components ‘StrassenSignal’ and ‘UeberwachungsSignal’ do not receive inputs from the
environment but are controlled by the internal command inputs ‘UeberwachungsKommando’ and
‘StrassensignalKommando’. Hence, another environment for model-checking had to be chosen. Since
the above mentionened verification goal is a safety requirement, the property should hold in all cases
independent of the issued commands to the components. The command inputs are stimulated with a
non-deterministic choice of commands:

1 proctype PSimBUESt ( ) {
2 do
3 : : SCH PSimBUESt ; atomic{
4 i f
5 : : uebSigKommando =1;
6 : : uebSigKommando =2;
7 : : uebSigKommando =3;
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8 : : uebSigKommando =4;
9 f i ;

10 i f
11 : : StrSig1Kommando =0;
12 : : StrSig1Kommando =1;
13 : : StrSig1Kommando =3;
14 : : StrSig1Kommando =4;
15 f i ;
16 } ; SCH PSimBUESt=0;
17 od
18 }

Listing 12.15: Non-determinstic stimulation of the command inputs

Results: The model-checker was generated with the same options as above. The size of the resulting
state vector is 148 bytes. The model-checking took only a few seconds and terminated with 0 errors.

Conclusion
Verification of GALS systems directly on the source code level remains an attractive option for in-
dustrial application. Today, tools like SPIN for the asynchronous world and SCADE for synchronous
systems that implement formal methods are available and in a mature state. During the last section we
have evaluated model-checking of GALS systems. Source code generated directly from synchronous
SCADE component models (without any abstraction) are combined with an asynchronous architecture
in PROMELA (SPIN) and verified with SPIN against requirements stated as LTL-formulas.

However, the experiments have shown that the source level approach without abstraction is not yet
feasible even for low-complexity GALS systems as the level crossing case study. Only a minimized
sub-model of the case study could be checked against its requirements. The main reason was that the
generated code from SCADE is not optimized for model checking:

• code generation often inefficient

• state space explosion: e.g. boolean variables as int, etc

• inefficient state representation

Although, it was not possible to verify the integrated level crossing system, the outcome of the
previous experiments was not disappointing. (1) The experiments allowed to gain experience with all
aspects of GALS verification (synchronous and asynchronous modeling, scheduling, communication,
time, verification goals) and provides us with important questions to be answerded within project
VerSyKo. (2) That source code model-checking is not yet feasible for our case study, gives additional
motivation for the VerSyKo approach to use contracts as abstractions in order to handle industrial size
model-checking problems.

12.3 Turn indicator

12.4 Engine-Start-Stop-Automatic
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Chapter 13

Validation of developed methods and
comparison of model checking methods

13.1 CDLS Descriptions of Level Crossing Case Study

13.2 Contracts and Verification of the Level Crosssing System

13.3 Benchmark of SPIN and UPPAAL Targets

This section reports on benchmark measurements performed for the alternative model-checking back-
ends of the contract specification language GTL.

The considered backends are the model-checking tools SPIN [59] and UPPAAL [67]. The objec-
tive of this document is to compare their performance with respect to time and memory consumption
for equivalent inputs.

More details on measurement process and input data can be found in the whitepaper [75].

Tool Version Information.
For the GTL tool, version 0.1 (2012-01-09) is used.

For UPPAAL, the 64-bit version 4.1.7 is used.
For SPIN, version 6.1.0 is used.

Test Platform Information.
All run-time tests have been executed on a 2.80GHz Intel Xeon CPU with 24GB of main memory and
12288 KB of cache. The machine (bull) provides multiple CPUs (24), but the tool make use of only
one CPU (with 100% load).

Time and memory data has been retrieved with the system utility

/usr/bin/time

time version: GNU time 1.7.

13.3.1 The Benchmark Example: Client-Server Mutex

SPIN is a LTL model checker, while UPPAAL treats a (small) subset of timed CTL (TCTL). Therefore
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the tools are incomparable in general. However, the common subset of these concepts includes safety
conditions (also known as “never claims”). We will use this subset for our analysis.

Criteria for Selecting the Example

When selecting a benchmark example, the following criteria should be fulfilled.

(A) The example should be easy to comprehend.

Rationale: It should be possible for a human inspector to determine whether a given input
represents a valid instance of the example. Otherwise, the generated input data could not be
trusted.

(B) The example should be scalable with respect to size, i.e. provide parametrized instances with
increasing state space.

Rationale: For model-checking, it is common that “small” inputs can be processed without
meaningful time/memory consumption and “large” inputs yield out-of-memory conditions. To
allow for a meaningful comparison, we would like to gradually increase the input size (i.e. size
of the state space), until we reach the limits of feasibility or user patience.

(C) The example should provide a non-trivial safety property (that holds).

Rationale: A meaningful comparison of tools requires comparable tasks they perform. Model-
checking a safety-condition (successfully) corresponds to a statement with respect to the com-
plete (reachable) state space; since the input data is equivalent, so is their state space.

Client-Server Mutex Protocol

We found an example that meets all the above criteria with a Client-Server Mutex protocol.
In general, Mutex (or mutual exclusion) is a property of parallel processes that compete for a

shared resource. The resource can be allocated to at most one process, thus a protocol has to be
established that (I) allows in principle every process to get the resource and (II) prevents two (or
more) processes from using the resource at the same time.

A process that got hold of the resource is said to be in the critical section. (I) is a fairness condition
(“something good will eventually happen to everyone”) on the protocol, while (II) is a safety condition
(“nothing bad will happen”).

There are various mutex protocols established in the literature (see, e.g.,[70]). The Client-Server
Mutex is a variation, where N clients may request access to the critical section from a single server.
A client only enters the critical section, if the request is granted. After leaving the critical section, the
client notifies the server.

The server

• keeps track of who got granted access to the critical section

• and

(i) if a client is in the critical section, nobody else is granted access

(ii) otherwise, the server grants access to exactly one client (selected from the list of applicants
for the critical section)
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This protocol is simple (criterion (A)) and allows for an arbitrary (fixed) number of clients (criterion
(B)).

Moreover, the safety condition “at most one client in the critical section” is a purely combinato-
rial property, i.e., no clock is involved. Thus it can be expressed equivalently both in SPIN and in
UPPAAL. Since the property is true (by inspection), the complete state space has to be analyzed by
the corresponding tool (criterion (C)).

13.3.2 Generation of Input Data

This chapter explains how the input data for the model-checking tools have been generated. First a
GTL formulation for sequence of clients N has been generated. This has been transformed by the
GTL utility to the equivalent SPIN or UPPAAL representation.

Generation of GTL formulation

The Client-Server Mutex sketched in Section 13.3.1 can be formulated very systematically in GTL.
The generation here has been done via an AWK-Script. The script takes the number N of clients

as command line input and prints the GTL-Syntax to <stdout>.
Proper operation has been validated by (textually) comparing the output of N = 3 against the

manual formulation, as it has been developed by Technical University Braunschweig.

Generation of SPIN/PROMELA input data

The input language for the SPIN tool is PROMELA, see [59].
The PROMELA-files were generated by the GTL tool via processing of mutex <N>.glt

gtl mutex_<N>.gtl

This yields a mutex <N>.pr file, which contains a LTL-formulation of the safety condition.
Note. The above call to GTL-0.1 (2012-01-09) does not only generate the *.pr file, but also pro-

cesses it with SPIN and runs the corresponding verifier. For the measurements, the verifier
were aborted and re-compiled on the measurement machine (based on the corresponding *.pr file).

Generation of UPPAAL input data

The UPPAAL tool operates on *.xml files (following a UPPAAL specific document-type definition),
see [67].

The *.xml files were generated by the GTL tool via processing of mutex <N>.glt:

gtl -m uppaal mutex_<N>.gtl

This yields a mutex <N>.xml file.
UPPAAL expects model-checking queries (here: the safety condition) to be stored in a separate

query file, *.q.
In version 0.1 (2012-01-09), the GTL tool is not capable of generating this file automatically, since

in general not every LTL formula can be expressed in the UPPAAL query language.1

Therefore, the query files mutex <N>.q have been generated together with the *.gtl files by
the AWK-Script.

1A subset of TCTL.
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13.3.3 The Measurement Process

SPIN-6.1.0 and UPPAAL-4.1.7 have been installed on a high-performance machine (bull), which
provides 2.80GHz Intel Xeon CPU with 24GB of main memory and 12288 KB of cache. The operat-
ing system is Linux CentOS release 5.7.

The machine has not been reserved exclusively for the benchmark testing; however, there were no
processes with substantial memory consumption present during the measurement. The time measure-
ment refers to user time, i.e. the total number of CPU-seconds that the process spent in user mode.2

The memory measured is the optimistic allocation that the Linux kernel allows, i.e. the memory the
process might make use of at the point of highest memory load.3

The UPPAAL tool can directly operate on the *.xml and *.q files. The command line invocation
looks like this:

verifyta mutex_<N>.xml mutex_<N>.q

SPIN/PROMELA, the *.pr files were transformed to a verifier executable, before the mea-
surement was started; this happened in time well below a second and can be neglected. The command
line invocation then looks like this:

./mutex_<N>-verifier

The time and memory information have been recorded by means of the script measure.bash,
which makes use of the system utility /usr/bin/time.

All verification processes were run in sequence (to exclude interaction). Every verification pro-
cess recorded its options and results (time, memory, verification outcome) to a file. The graphical
representation has been derived from these files by means of of the gnuplot.

Selection of Compile-Time / Run-Time Options

The tools SPIN and UPPAAL allow for various user options to modify (and hopefully speed-up) the
verification of a given model. SPIN also allows compile-time options, since the verifier is generated
by compiling C-file pan.c (here: with the gcc).

For UPPAAL, there are no compile-time options available (to the user); it should be noted, how-
ever, that a 64-bit executable of UPPAAL is used, since this allows addressing of more than 4GB of
memory.

The following selection of (combinations of) tool options have been made.

2Comparison of user time/real time shows, that effectively one CPU exclusively executed the model-checking process;
in presence of 24 CPUs, this is not surprising.

3This explains why some numbers exceed the available 24GB of main memory without using swap.
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SPIN option combinations used:

Compile Time Run Time

-a
-m999k
-m9999999k -a

-DSAFETY -m9999999k
-O2 -m9999999k -a
-O2 -DSAFETY -m9999999k
-O3 -m9999999k -a
-O3 -DSAFETY -m9999999k

UPPAAL option combinations used:

Compile Time Run Time
(N/A) -S 0
(N/A) -S 1
(N/A) -S 2
(N/A) -S 2 -A
(N/A) -S 0 -C
(N/A) -S 1 -C
(N/A) -S 2 -C
(N/A) -S 2 -Z
(N/A) -S 2 -n 0
(N/A) -S 2 -n 1
(N/A) -S 2 -n 2
(N/A) -S 2 -n 3
(N/A) -S 2 -n 4
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Measurement Plots

Figures 13.5,13.6 display the time and memory consumption with increasing number N of clients.
Unmapped N correspond to out-of-memory situations.
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Figure 13.5: Time consumption for exhaustive search for N clients; measured on a 2.80GHz Intel®

Xeon® CPU with 24GB of main memory
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Figure 13.6: Memory consumption for exhaustive search forN clients; measured on a 2.80GHz Intel®

Xeon® CPU with 24GB of main memory
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13.3.4 Evaluation and Conclusion

In all the samples, time-and memory consumption follow an exponential slope (after some offset).
This follows to state-space increment and is hardly surprising.

Comparing the performance of UPPAAL and SPIN as used as a backend for this specific example,
the following observations can be made.

1. UPPAAL does perform significantly better than SPIN (here).

With respect to run-time, UPPAAL is ≈ 24 times faster when comparing best-to-best, without
use of compiler optimizations (-O2, -O3) for SPIN the factor would be ≈ 53.4

With respect to memory allocation, UPPAAL uses only ≈ 1/87.5

With all combinations, UPPAAL was able to process N = 11 clients, while SPIN ran out of
memory after at most 9 clients.6

2. Compile-Time optimization gives some time-improvements for SPIN.

The SPIN verifier is≈ 2.4 times faster when compiled with optimization. It is mildly surprising
that -O2 actually performs a bit better than -O3. This is—of course—dependent on the used C
compiler.

Note that the optimizations do essentially not affect the memory consumption. Memory remains
the limiting factor.

3. No Run-Time option gives significant improvements (here).

The best and worst were all within a factor of 2.

Apparently the symmetry of the N client machines cannot be exploited in a significant way (by
the tried options).

A positive observation on the side is that all successful runs completed within the hour.7 This
means that (for 24GB of main memory) there is an acceptable time, after which we can stop waiting.

4The factor is derived as

ΣN=2..8(time of successful SPIN runs)/(number of successful SPIN runs)
ΣN=2..8(time of successful UPPAAL runs)/(number of successful UPPAAL runs)

5This comparison is somewhat unfair, since run-time option -m9999999k forces SPIN to allocate a big hash-table
even for small value of N . Adjusting this option to “just fit” the model size would yield better result for SPIN here.

6N = 9 completes for the SPIN execution with run-time option -m999k; the outcome is unreliable due to limited
search depth. Reliable computations are possible up to 8 clients.

7The unsuccessful (aborted) runs are not displayed in the plots or tables. The longest observed run lasted for 4.4 hours,
before it got killed due to out-of-memory condition.
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Chapter 14

Lessons Learned and Summary
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Chapter 15

Summary and Future Work

In this section we will summarize the current status of the VerSyKo project and outline the further
steps to be taken within this project and beyond.

The results planned for AP 1 and AP 7 have all been reached in the allocated time:

• The definition of one user level domain specific language for specifying GALS systems—the
CDSL (see Section 4). This provides in particular a user friendly specification environment
supporting intuitive specifications of component behavior using state machines and descriptive
black box specifications using LTL. It also integrates guaranteed behavior of components as a
way of annotating component specifications with previously verified properties or behavior.

• Prototypical tool support for specification in CDSL; indeed, CDSL is realized as a UML-profile,
and modeling is supported by the tool Enterprise Architect [69].

• A stable textual core specification language—the GALS translation language GTL (see Sec-
tion 5). It allows for the specification of GALS systems as a network of synchronous com-
ponents each of which is abstractly described by one or several contracts in the form of LTL
formulas or automata. Again, component models are annotated by guaranteed behavior.

• Concepts for transformations from CDSL to GTL (see Section 4.5 and from there to analysis
tools for model checking (see Section 7).

• Two industrial case studies; the smoke detection system described in Section 12.1 and the level
crossing system described in Section 12.2. The first of these case studies now provides a GALS
system with specified contracts of all components, where as the second case study currently
provides the (implementation level) SCADE models of all synchronous components.

In addition to these planned works we also provided a first prototype of the translation tool GTL
→ PROMELA. That the first verification experiments with this prototype still show performance prob-
lems comes as no surprise. The implemented algorithm for translation is not optimized yet. However,
first experiments we currently are performing with an optimized version look very promising.

15.1 Further work

The next tasks scheduled according to the project plan have already been started or are starting. Other
tasks also follow as planned. The next steps are as follows:
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• a model transformation GTL→ PROMELA (AP 2); here and in the next point it will be partic-
ularly important to employ optimization techniques such as removal of redundant transitions/s-
tates or symmetry reduction (in the presence of many instances of the same component) to fight
complexity issues

• a model transformation to GTL→ UPPAAL (AP 3; from Dec. 2011)

• local verification of contracts for components using bounded model checking (AP 4)

In addition, the two case studies will be expanded as needed for experiments evaluating the work
of the above work packages. In particular, as soon as first optimizations for the model transformation
GTL→ PROMELA have been implemented experiments will be performed with the manually coded
GTL specification for the cabin smoke detection system (see Listing A.1) and with a GTL specification
of the level crossing system. Later we will use the GTL specifications generated from a GALS model
specified with the CDSL in Enterprise Architect. The following two tasks will expand the two case
studies:

• For the level crossing system a user level DSL specification (e. g. in CDSL) will be specified
during the course of the project, and this specification will be transformed into GTL.

• For evaluation of the work on local model checking the implementations as synchronous models
of the components from the smoke cabin case study will be needed. These models will be
produced, and the local verification of the contracts of each component on the corresponding
implementation model will be performed.

A new idea within VerSyKo is to use SMT (“Satisfiability Modulo Theory”) solving and bounded
model checking not only for local verification but also globally, at least to produce counterexamples
in the formal verification. So besides the model transformations GTL→ PROMELA and GTL→ UP-
PAAL we envision a third transformation from GTL to the input language of an SMT-solver. This will
further help to mitigate the project risk that formal verification using one of the model transformations
does not scale to case studies of a size relevant for future industrial application.

Verified will provide their SMT-solver SONOLAR, which is developed in cooperation with the
University of Bremen and which performed very well in recent SMT-COMP’11 1

Later we intend to study how to prove completeness using the SMT-solver, i. e., to show that a
GALS model satisfies a certain verification goal. This will combine SMT-solving with induction and
involves to establish an upper bound for the step width of the induction step.

1see http://www.smtcomp.org/2011/.
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Appendix A

Manual Smoke Detection Model in GTL
(2 Smoke Sensors) - Full Listing

1 / / −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
2 / / Manual d e f i n i t i o n o f t h e v e r i f i c a t i o n c o n s t r a c t s
3 / / −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
4 / / @TABLE OF CONTENTS: [TOCD: 19:44 09 Aug 2011]
5 / /
6 / / [ 1 ] STATE MACHINE MODELS
7 / / [ 1 . 1 ] STATE MACHINE CORRESPONDING TO CIDS ( )
8 / / [ 1 . 2 ] STATE MACHINE CORRESPONDING TO CAN BUS ( )
9 / / [ 1 . 3 ] STATE MACHINE CORRESPONDING TO SMOKESENSOR ( )

10 / / [ 1 . 4 ] STATE MACHINES FOR SMOKE DETECTOR ( s p l i t −up )
11 / / [ 1 . 4 . 1 ] S t a t e m a c h i n e SDIden tReques tWatchdog
12 / / [ 1 . 4 . 2 ] S t a t e m a c h i n e SDLOGIC
13 / / [ 1 . 4 . 3 ] S t a t e m a c h i n e SDSEND ( s e e EA : UPSTREAMSD2)
14 / / [ 1 . 5 ] AUXILIAR : GLOBAL CLOCK and d e p e n d e n t l i m i t−range i n t (WRAPCLOCK)
15 / / [ 1 . 6 ] AUXILIAR : g e n e r a t i n g CONSTANTS ( as p a r a m e t e r s f o r i n s t a n c e s )
16 / / [ 2 ] INSTANCES AND CONNECTIONS
17 / / [ 3 ] VERIFICATION GOALS
18 / / −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
19
20 / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /
21 / / [ 1 ] STATE MACHINE MODELS
22 / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /
23
24
25 / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /
26 / / [ 1 . 1 ] STATE MACHINE CORRESPONDING TO CIDS ( )
27 / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /
28
29 model [ none ] CIDS ( ” ” ) {
30
31 i n p u t i n t t ;
32 i n p u t i n t I d e n t R e q u e s t R e p e a t e r ;
33 o u t p u t bool I d e n t R e q u e s t D o n e ;
34 o u t p u t i n t i n f e r T o p o l o g y C a n F a i l ;
35 o u t p u t i n t smokeAlarm ; / / number o f smoke d e t e c t o r r e p o r t i n g l a s t alarm
36 / / 0 f o r none
37 i n p u t i n t OUTCAN0Ident i f ier ;
38 i n p u t i n t OUTCAN2Ident i f ier ;
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39 o u t p u t i n t TOSENDUPSTREAM;
40 au tomaton {
41 / / −− CIDSLOGIC STATE : IDENTREQUESTMODE −−−−−−−−−−−−−−−−−−−−−−−−−−−−−
42 / / −− IDENTREQUESTMODE STATES −−−−−−−−−−−−−−−−−−−−−−−−−−−−
43 i n i t s t a t e IDENTREQUESTMODEInitial {
44
45 t r a n s i t i o n [ ( I d e n t R e q u e s t D o n e = f a l s e ) and
46 (0 = t ) and
47 (TOSENDUPSTREAM = 10) ]
48 IDENTREQUESTMODETRANSMITIDENTREQUEST;
49 }
50 s t a t e IDENTREQUESTMODETRANSMITIDENTREQUEST {
51 ( I d e n t R e q u e s t D o n e = f a l s e ) and
52 (TOSENDUPSTREAM = 10) ;
53
54 t r a n s i t i o n [ ( t >= 50) and
55 ( I d e n t R e q u e s t D o n e = t rue ) and
56 ( i n f e r T o p o l o g y C a n F a i l = 7 ) ]
57 IDENTREQUESTMODECANFAILNOACK;
58
59 t r a n s i t i o n [ ( OUTCAN0Ident i f ier + 1 ) = 12]
60 IDENTREQUESTMODEACKRECEIVED;
61
62 t r a n s i t i o n [ ( I d e n t R e q u e s t D o n e = t rue ) and
63 (0 = I d e n t R e q u e s t R e p e a t e r ) ]
64 SDPOLLINGMODE;
65 }
66 s t a t e IDENTREQUESTMODECANFAILNOACK {
67 ( I d e n t R e q u e s t D o n e = t rue ) and
68 (TOSENDUPSTREAM = 10) ;
69
70 t r a n s i t i o n [ ( I d e n t R e q u e s t D o n e = t rue ) and
71 (0 = I d e n t R e q u e s t R e p e a t e r ) ]
72 SDPOLLINGMODE;
73 }
74 s t a t e IDENTREQUESTMODEACKRECEIVED {
75 ( I d e n t R e q u e s t D o n e = f a l s e ) and
76 (TOSENDUPSTREAM = 10) ;
77
78 t r a n s i t i o n [ ( ( OUTCAN0Ident i f ier + 1 ) = 13) and
79 ( I d e n t R e q u e s t D o n e = t rue ) and
80 ( i n f e r T o p o l o g y C a n F a i l = 7 ) ]
81 IDENTREQUESTMODECANFAILREPLYRECEIVED ;
82
83 t r a n s i t i o n [ t >= 500]
84 IDENTREQUESTMODEPROTOCOLFAIL;
85
86 t r a n s i t i o n [ OUTCAN2Ident i f ier = 10]
87 IDENTREQUESTMODEREQUESTROUNDTRIPOK;
88
89 t r a n s i t i o n [ ( I d e n t R e q u e s t D o n e = t rue ) and
90 (0 = I d e n t R e q u e s t R e p e a t e r ) ]
91 SDPOLLINGMODE;
92 }
93 s t a t e IDENTREQUESTMODECANFAILREPLYRECEIVED {
94 ( I d e n t R e q u e s t D o n e = t rue ) and
95 (TOSENDUPSTREAM = 10) ;
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96
97 t r a n s i t i o n [ ( I d e n t R e q u e s t D o n e = t rue ) and
98 (0 = I d e n t R e q u e s t R e p e a t e r ) ]
99 SDPOLLINGMODE;

100 }
101 s t a t e IDENTREQUESTMODEREQUESTROUNDTRIPOK {
102 ( I d e n t R e q u e s t D o n e = t rue ) and
103 (TOSENDUPSTREAM = 10) ;
104
105 t r a n s i t i o n [ ( I d e n t R e q u e s t D o n e = t rue ) and
106 (0 = I d e n t R e q u e s t R e p e a t e r ) ]
107 SDPOLLINGMODE;
108 }
109 s t a t e IDENTREQUESTMODEPROTOCOLFAIL {
110 TOSENDUPSTREAM = 1 0 ;
111 t r a n s i t i o n
112 IDENTREQUESTMODEPROTOCOLFAIL;
113 }
114 / / −− CIDSLOGIC STATE : SDPOLLINGMODE −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
115 s t a t e SDPOLLINGMODE {
116 I d e n t R e q u e s t R e p e a t e r <= 3600 ;
117 t r a n s i t i o n [ ( I d e n t R e q u e s t R e p e a t e r >= 3600) and
118 ( I d e n t R e q u e s t D o n e = f a l s e ) ]
119 IDENTREQUESTMODEInitial ;
120 }
121 } ;
122 }
123
124
125 / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /
126 / / [ 1 . 2 ] STATE MACHINE CORRESPONDING TO CAN BUS ( )
127 / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /
128
129 model [ none ] CAN( ” ” ) {
130 i n p u t i n t UPINCANIdent i f i e r ;
131 i n p u t i n t DOWNINCANIdentifier ;
132 o u t p u t i n t OUTCANIdent i f ier ;
133 o u t p u t bool B u s F a u l t ;
134 au tomaton {
135 i n i t s t a t e CANNormalOperation0 {
136 B u s F a u l t = f a l s e ;
137 t r a n s i t i o n [ UPINCANIdent i f i e r <= DOWNINCANIdentifier ]
138 CANNormalOperationA ;
139 t r a n s i t i o n [ UPINCANIdent i f i e r > DOWNINCANIdentifier ]
140 CANNormalOperationB ;
141 t r a n s i t i o n
142 CANBusFailure ;
143 }
144 s t a t e CANNormalOperationA {
145 B u s F a u l t = f a l s e ;
146 OUTCANIdent i f ier = UPINCANIdent i f i e r ;
147 t r a n s i t i o n
148 CANNormalOperation0 ;
149 }
150 s t a t e CANNormalOperationB {
151 B u s F a u l t = f a l s e ;
152 OUTCANIdent i f ier = DOWNINCANIdentifier ;
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153 t r a n s i t i o n
154 CANNormalOperation0 ;
155 }
156 s t a t e CANBusFailure {
157 B u s F a u l t = t rue ;
158 OUTCANIdent i f ier = 0 ;
159 t r a n s i t i o n
160 CANNormalOperation0 ;
161 }
162 } ;
163 }
164
165 / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /
166 / / [ 1 . 3 ] STATE MACHINE CORRESPONDING TO SMOKESENSOR ( )
167 / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /
168
169 model [ none ] SMOKESENSOR( ” ” ) {
170 o u t p u t bool smoke ;
171 au tomaton {
172 i n i t s t a t e IDLE {
173 smoke = f a l s e ;
174 t r a n s i t i o n
175 DETECTINGSMOKE;
176 }
177 s t a t e DETECTINGSMOKE {
178 smoke = t rue ;
179 t r a n s i t i o n
180 IDLE ;
181 }
182 } ;
183 }
184
185
186 / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /
187 / / [ 1 . 4 ] STATE MACHINES FOR SMOKE DETECTOR ( s p l i t −up )
188 / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /
189
190
191 / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /
192 / / [ 1 . 4 . 1 ] S t a t e m a c h i n e SDIden tReques tWatchdog
193 / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /
194
195 model [ none ] SDIdentReques tWatchdog ( ” ” ) {
196 i n p u t i n t OUTCANIdent i f ier ;
197 i n p u t bool e l a p s e d ;
198 o u t p u t i n t TOSENDDOWNSTREAM;
199 o u t p u t bool r e s e t ;
200 au tomaton {
201 i n i t s t a t e W a i t f o r I d e n t R e q u e s t {
202 ( ( not ( OUTCANIdent i f ier = 10) ) and
203 ( r e s e t = f a l s e ) ) ;
204 t r a n s i t i o n [ OUTCANIdent i f ier = 10]
205 WaitforIdentAckENTRY ;
206 }
207 s t a t e WaitforIdentAckENTRY {
208 r e s e t = t rue ;
209 t r a n s i t i o n [ t rue ]
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210 W a i t f o r I d e n t A c k ;
211 }
212 s t a t e W a i t f o r I d e n t A c k {
213 r e s e t = f a l s e ;
214 t r a n s i t i o n [ OUTCANIdent i f ier = 12]
215 W a i t f o r I d e n t R e q u e s t ;
216
217 t r a n s i t i o n [ ( not ( OUTCANIdent i f ier = 12) ) and
218 ( e l a p s e d = t rue ) and
219 (TOSENDDOWNSTREAM = 13) ]
220 W a i t f o r I d e n t R e q u e s t ;
221 }
222 } ;
223 }
224
225 / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /
226 / / [ 1 . 4 . 2 ] S t a t e m a c h i n e SDLOGIC
227 / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /
228
229
230 model [ none ] SDLOGIC( ” ” ) {
231 i n p u t bool smoke ;
232 i n p u t i n t myAddress ;
233 i n p u t i n t OUTCANIdentifierDOWNSTREAM ; / / OUTCAN<n> I d e n t i f i e r
234 i n p u t i n t OUTCANIdentifierUPSTREAM ; / / OUTCAN<n+1> I d e n t i f i e r
235 o u t p u t i n t TOSENDUPSTREAM;
236 o u t p u t i n t TOSENDDOWNSTREAM;
237 au tomaton {
238 i n i t s t a t e NOINPUT {
239 t r a n s i t i o n [ not ( OUTCANIdentifierDOWNSTREAM = 0) ]
240 INPUTUPSTREAM ;
241 t r a n s i t i o n [ not ( OUTCANIdentifierUPSTREAM = 0) ]
242 INPUTDOWNSTREAM;
243 }
244 s t a t e INPUTUPSTREAM {
245 ( ( ( OUTCANIdentifierDOWNSTREAM = 10)
246 => ( (TOSENDUPSTREAM = OUTCANIdentifierDOWNSTREAM ) and (TOSENDDOWNSTREAM =

12 + myAddress ) ) )
247 and
248 ( ( ( OUTCANIdentifierDOWNSTREAM = 11 + myAddress ) )
249 => (TOSENDUPSTREAM = 0) )
250 and
251 ( ( ( OUTCANIdentifierDOWNSTREAM = 11 + myAddress ) and ( smoke = t rue ) )
252 => (TOSENDDOWNSTREAM = 14) )
253 and
254 ( ( ( OUTCANIdentifierDOWNSTREAM = 11 + myAddress ) and ( smoke = f a l s e ) )
255 => (TOSENDDOWNSTREAM = 15) )
256 and
257 ( ( ( OUTCANIdentifierDOWNSTREAM = 11) and ( f a l s e ) )
258 => ( (TOSENDUPSTREAM = OUTCANIdentifierDOWNSTREAM ) and
259 (TOSENDDOWNSTREAM = 0) ) )
260 and
261 ( ( not ( ( OUTCANIdentifierDOWNSTREAM = 10) or
262 ( OUTCANIdentifierDOWNSTREAM = 11) ) )
263 => ( (TOSENDUPSTREAM = 0) and
264 (TOSENDDOWNSTREAM = 0) ) )
265 ) ;
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266
267 t r a n s i t i o n [ OUTCANIdentifierDOWNSTREAM = 0]
268 NOINPUT ;
269 }
270 s t a t e INPUTDOWNSTREAM {
271 ( ( ( ( OUTCANIdentifierUPSTREAM = 13) or
272 ( OUTCANIdentifierUPSTREAM = 15) or
273 ( OUTCANIdentifierUPSTREAM = 14) )
274 => ( (TOSENDUPSTREAM = 0) and
275 (TOSENDDOWNSTREAM = OUTCANIdentifierUPSTREAM ) ) )
276 and
277 ( ( not ( ( OUTCANIdentifierUPSTREAM = 13) or
278 ( OUTCANIdentifierUPSTREAM = 15) or
279 ( OUTCANIdentifierUPSTREAM = 14) ) )
280 => ( (TOSENDUPSTREAM = 0) and
281 (TOSENDDOWNSTREAM = 0) ) )
282 ) ;
283
284 t r a n s i t i o n [ OUTCANIdentifierUPSTREAM = 0]
285 NOINPUT ;
286 }
287 } ;
288 }
289
290 / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /
291 / / [ 1 . 4 . 3 ] S t a t e m a c h i n e SDSEND ( s e e EA : UPSTREAMSD2)
292 / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /
293
294
295 model [ none ] SDSEND( ” ” ) {
296 i n p u t i n t DATATOSEND;
297 i n p u t bool e l a p s e d ;
298 i n p u t i n t OUTCANIdent i f ier ;
299 o u t p u t i n t OUTPUT;
300 o u t p u t i n t DATATOSENDold ; / / s h o u l d be i n p u t
301 o u t p u t bool r e s e t ;
302 au tomaton {
303 i n i t s t a t e IDLE {
304 ( r e s e t = f a l s e ) ;
305 t r a n s i t i o n [DATATOSEND != DATATOSENDold]
306 ATTEMPTTOTRANSMIT;
307 }
308 s t a t e ATTEMPTTOTRANSMIT {
309 ( ( DATATOSENDold = DATATOSEND) and
310 ( r e s e t = f a l s e ) and
311 (OUTPUT = DATATOSEND) ) ;
312 t r a n s i t i o n [ not (DATATOSENDold = DATATOSEND) ]
313 ATTEMPTTOTRANSMIT;
314 t r a n s i t i o n [DATATOSENDold = OUTCANIdent i f ier ]
315 TRANSMITEntry ;
316 }
317 s t a t e TRANSMITEntry {
318 ( r e s e t = t rue ) ;
319 t r a n s i t i o n
320 TRANSMIT ;
321 }
322 s t a t e TRANSMIT {
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323 ( r e s e t = f a l s e ) ;
324 t r a n s i t i o n [ not (DATATOSENDold = OUTCANIdent i f ier ) ]
325 ATTEMPTTOTRANSMIT;
326 t r a n s i t i o n [ not (DATATOSENDold = DATATOSEND) ]
327 ATTEMPTTOTRANSMIT;
328 t r a n s i t i o n [ e l a p s e d = t rue ]
329 IDLEEntry ;
330 }
331 s t a t e IDLEEntry {
332 (OUTPUT = 0) ;
333 t r a n s i t i o n
334 IDLE ;
335 }
336 } ;
337 }
338
339 / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /
340 / / [ 1 . 5 ] AUXILIAR : GLOBAL CLOCK and d e p e n d e n t l i m i t−range i n t (WRAPCLOCK)
341 / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /
342
343 model [ none ] CLOCK( ” ” ) {
344 o u t p u t i n t t ime ;
345 i n p u t i n t t i m e o l d ; / / f a u l t y : mapped t o ’ i n p u t ’ , b u t s h o u l d be ’ i n t e r n a l ’
346 au tomaton {
347 i n i t s t a t e INITIAL {
348 t r a n s i t i o n [ t ime = 0]
349 TICK ;
350 }
351 s t a t e TICK {
352 t i m e o l d = t ime ;
353 t r a n s i t i o n [ t ime = t i m e o l d + 1]
354 TICK ;
355 }
356 } ;
357 }
358
359 / / wraparound a t TIMEOUTIDENTREQUESTMODE
360 model [ none ] WRAPCLOCK( ” ” ) {
361 i n p u t i n t t i c k ;
362 o u t p u t i n t t ime ;
363 / / below : modulo−c o m p u t a t i o n
364 / / x mod M = x − ( x /M) *M
365 a lways t ime = t i c k − ( ( t i c k / (3600 + 1) ) * (3600 + 1) ) ;
366 }
367
368 / / can be r e s e t t e d ; t i m e o u t a t TIMEOUTIDENTACK
369 model [ none ] STOPWATCHIDENTACK( ” ” ) {
370 i n p u t i n t t i c k ;
371 i n p u t bool r e s e t ;
372 o u t p u t bool e l a p s e d ;
373 i n p u t i n t memor ised t ime ; / / f a u l t y : mapped t o ’ i n p u t ’ , b u t s h o u l d be ’ i n t e r n a l ’

or ’ o u t p u t ’
374 au tomaton {
375 i n i t s t a t e SWIDLE {
376 ( ( r e s e t = f a l s e ) and
377 ( e l a p s e d = f a l s e ) ) ;
378 t r a n s i t i o n [ ( r e s e t = t rue ) and ( memor ised t ime = t i c k ) ]
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379 SWRUNNING;
380 }
381 s t a t e SWRUNNING {
382 ( ( memor ised t ime + 50 < t i c k ) and
383 ( e l a p s e d = f a l s e ) ) ;
384 t r a n s i t i o n [ memor ised t ime + 50 = t i c k ]
385 SWTRIGGER;
386 }
387 s t a t e SWTRIGGER {
388 ( e l a p s e d = t rue ) ;
389 t r a n s i t i o n [ ( r e s e t = t rue ) and ( memor ised t ime = t i c k ) ]
390 SWRUNNING;
391 }
392 } ;
393 }
394
395 / / can be r e s e t t e d ; t i m e o u t a t TIMEOUTSEND
396 model [ none ] STOPWATCHSEND( ” ” ) {
397 i n p u t i n t t i c k ;
398 i n p u t bool r e s e t ;
399 o u t p u t bool e l a p s e d ;
400 i n p u t i n t memor ised t ime ; / / f a u l t y : mapped t o ’ i n p u t ’ , b u t s h o u l d be ’ i n t e r n a l ’

or ’ o u t p u t ’
401 au tomaton {
402 i n i t s t a t e SWIDLE {
403 ( ( r e s e t = f a l s e ) and
404 ( e l a p s e d = f a l s e ) ) ;
405 t r a n s i t i o n [ ( r e s e t = t rue ) and ( memor ised t ime = t i c k ) ]
406 SWRUNNING;
407 }
408 s t a t e SWRUNNING {
409 ( ( memor ised t ime + 5 < t i c k ) and
410 ( e l a p s e d = f a l s e ) ) ;
411 t r a n s i t i o n [ memor ised t ime + 5 = t i c k ]
412 SWTRIGGER;
413 }
414 s t a t e SWTRIGGER {
415 ( e l a p s e d = t rue ) ;
416 t r a n s i t i o n [ ( r e s e t = t rue ) and ( memor ised t ime = t i c k ) ]
417 SWRUNNING;
418 }
419 } ;
420 }
421
422 / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /
423 / / [ 1 . 6 ] AUXILIAR : g e n e r a t i n g CONSTANTS ( as p a r a m e t e r s f o r i n s t a n c e s )
424 / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /
425
426 model [ none ] CONST1( ” ” ) {
427 o u t p u t i n t c o n s t a n t ;
428 a lways ( c o n s t a n t = 1) ;
429 }
430
431 model [ none ] CONST2( ” ” ) {
432 o u t p u t i n t c o n s t a n t ;
433 a lways ( c o n s t a n t = 2) ;
434 }
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435
436
437 / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /
438 / / [ 2 ] INSTANCES AND CONNECTIONS
439 / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /
440
441 i n s t a n c e CLOCK c l o c k 0 ;
442 i n s t a n c e WRAPCLOCK t r i g g e r I R R ;
443
444 i n s t a n c e CIDS c i d s 0 ;
445
446 i n s t a n c e CAN can0 ;
447 i n s t a n c e CAN can1 ;
448 i n s t a n c e CAN can2 ;
449
450 i n s t a n c e SMOKESENSOR s e n s o r 1 ;
451 i n s t a n c e SMOKESENSOR s e n s o r 2 ;
452
453 i n s t a n c e STOPWATCHIDENTACK s t o p w a t c h 1 ;
454 i n s t a n c e STOPWATCHIDENTACK s t o p w a t c h 2 ;
455
456 i n s t a n c e STOPWATCHSEND stopwatchsend1DOWNSTREAM ;
457 i n s t a n c e STOPWATCHSEND stopwatchsend1UPSTREAM ;
458 i n s t a n c e STOPWATCHSEND stopwatchsend2DOWNSTREAM ;
459 i n s t a n c e STOPWATCHSEND stopwatchsend2UPSTREAM ;
460
461
462 i n s t a n c e SDIdentReques tWatchdog SDwatchdog1 ;
463 i n s t a n c e SDIdentReques tWatchdog SDwatchdog2 ;
464
465 i n s t a n c e SDLOGIC SDlogic1 ;
466 i n s t a n c e SDLOGIC SDlogic2 ;
467
468 i n s t a n c e SDSEND DOWNSTREAMSD1;
469 i n s t a n c e SDSEND UPSTREAMSD1;
470 i n s t a n c e SDSEND DOWNSTREAMSD2;
471 i n s t a n c e SDSEND UPSTREAMSD2;
472
473 i n s t a n c e CONST1 c o n s t 1 ;
474 i n s t a n c e CONST2 c o n s t 2 ;
475
476 c o n n e c t c l o c k 0 . t ime c i d s 0 . t ;
477 c o n n e c t c l o c k 0 . t ime t r i g g e r I R R . t i c k ;
478 c o n n e c t c l o c k 0 . t ime s t o p w a t c h 1 . t i c k ;
479 c o n n e c t c l o c k 0 . t ime s t o p w a t c h 2 . t i c k ;
480 c o n n e c t c l o c k 0 . t ime stopwatchsend1DOWNSTREAM . t i c k ;
481 c o n n e c t c l o c k 0 . t ime stopwatchsend1UPSTREAM . t i c k ;
482 c o n n e c t c l o c k 0 . t ime stopwatchsend2DOWNSTREAM . t i c k ;
483 c o n n e c t c l o c k 0 . t ime stopwatchsend2UPSTREAM . t i c k ;
484
485 c o n n e c t s e n s o r 1 . smoke SDlogic1 . smoke ;
486 c o n n e c t s e n s o r 2 . smoke SDlogic2 . smoke ;
487
488
489 / / −− SD : watchdog
490 c o n n e c t can1 . OUTCANIdent i f ier SDwatchdog1 . OUTCANIdent i f ier ;
491 c o n n e c t s t o p w a t c h 1 . e l a p s e d SDwatchdog1 . e l a p s e d ;
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492 c o n n e c t SDwatchdog1 . r e s e t s t o p w a t c h 1 . r e s e t ;
493 c o n n e c t SDwatchdog1 .TOSENDDOWNSTREAM DOWNSTREAMSD1.DATATOSEND;
494 c o n n e c t can2 . OUTCANIdent i f ier SDwatchdog2 . OUTCANIdent i f ier ;
495 c o n n e c t s t o p w a t c h 2 . e l a p s e d SDwatchdog2 . e l a p s e d ;
496 c o n n e c t SDwatchdog2 . r e s e t s t o p w a t c h 2 . r e s e t ;
497 c o n n e c t SDwatchdog2 .TOSENDDOWNSTREAM DOWNSTREAMSD2.DATATOSEND;
498
499
500 / / −− SD : l o g i c
501 c o n n e c t can0 . OUTCANIdent i f ier SDlogic1 . OUTCANIdentifierDOWNSTREAM ;
502 c o n n e c t can1 . OUTCANIdent i f ier SDlogic1 . OUTCANIdentifierUPSTREAM ;
503 c o n n e c t SDlogic1 .TOSENDUPSTREAM UPSTREAMSD1 .DATATOSEND;
504 c o n n e c t SDlogic1 .TOSENDDOWNSTREAM DOWNSTREAMSD1.DATATOSEND;
505 c o n n e c t can1 . OUTCANIdent i f ier SDlogic2 . OUTCANIdentifierDOWNSTREAM ;
506 c o n n e c t can2 . OUTCANIdent i f ier SDlogic2 . OUTCANIdentifierUPSTREAM ;
507 c o n n e c t SDlogic2 .TOSENDUPSTREAM UPSTREAMSD2 .DATATOSEND;
508 c o n n e c t SDlogic2 .TOSENDDOWNSTREAM DOWNSTREAMSD2.DATATOSEND;
509
510 c o n n e c t c o n s t 1 . c o n s t a n t SDlogic1 . myAddress ;
511 c o n n e c t c o n s t 2 . c o n s t a n t SDlogic2 . myAddress ;
512
513
514 / / −− SD : da ta t r a n s m i s s i o n
515 c o n n e c t stopwatchsend1DOWNSTREAM . e l a p s e d DOWNSTREAMSD1. e l a p s e d ;
516 c o n n e c t DOWNSTREAMSD1. r e s e t stopwatchsend1DOWNSTREAM . r e s e t ;
517 c o n n e c t DOWNSTREAMSD1. OUTPUT can0 . DOWNINCANIdentifier ;
518
519 c o n n e c t stopwatchsend2DOWNSTREAM . e l a p s e d DOWNSTREAMSD2. e l a p s e d ;
520 c o n n e c t DOWNSTREAMSD2. r e s e t stopwatchsend2DOWNSTREAM . r e s e t ;
521 c o n n e c t DOWNSTREAMSD2. OUTPUT can1 . DOWNINCANIdentifier ;
522
523 c o n n e c t stopwatchsend1UPSTREAM . e l a p s e d UPSTREAMSD1 . e l a p s e d ;
524 c o n n e c t UPSTREAMSD1 . r e s e t stopwatchsend1UPSTREAM . r e s e t ;
525 c o n n e c t UPSTREAMSD1 . OUTPUT can1 . UPINCANIdent i f i e r ;
526
527 c o n n e c t stopwatchsend2UPSTREAM . e l a p s e d UPSTREAMSD2 . e l a p s e d ;
528 c o n n e c t UPSTREAMSD2 . r e s e t stopwatchsend2UPSTREAM . r e s e t ;
529 c o n n e c t UPSTREAMSD2 . OUTPUT can2 . UPINCANIdent i f i e r ;
530
531 / / −− CIDS
532 c o n n e c t t r i g g e r I R R . t ime c i d s 0 . I d e n t R e q u e s t R e p e a t e r ;
533 c o n n e c t c i d s 0 .TOSENDUPSTREAM can0 . UPINCANIdent i f i e r ;
534 c o n n e c t can0 . OUTCANIdent i f ier c i d s 0 . OUTCAN0Ident i f ier ;
535
536
537
538 / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /
539 / / [ 3 ] VERIFICATION GOALS
540 / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /
541
542 / / s a f e t y ( s i m p l e )
543 v e r i f y {
544 a lways not ( c i d s 0 .TOSENDUPSTREAM = 99) ;
545 not a lways ( can1 . B u s F a u l t = f a l s e ) ;
546 }

Listing A.1: Full Smoke Model in GTL (2 Smoke Detectors)

186



A.1 Part that triggers large PROMELA output

1
2
3 / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /
4 / / [ 2 . 4 . 2 ] S t a t e m a c h i n e SD LOGIC (NOT SIMPLIFIED )
5 / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /
6
7
8 model [ none ] SDLOGIC( ” ” ) {
9 i n p u t bool smoke ;

10 i n p u t i n t myAddress ;
11 i n p u t i n t OUTCANIdentifierDOWNSTREAM ; / / OUTCAN<n> I d e n t i f i e r
12 i n p u t i n t OUTCANIdentifierUPSTREAM ; / / OUTCAN<n+1> I d e n t i f i e r
13 o u t p u t i n t TOSENDUPSTREAM;
14 o u t p u t i n t TOSENDDOWNSTREAM;
15 au tomaton {
16 i n i t s t a t e NOINPUT {
17 t r a n s i t i o n [ not ( OUTCANIdentifierDOWNSTREAM = 0) ]
18 INPUTUPSTREAM ;
19 t r a n s i t i o n [ not ( OUTCANIdentifierUPSTREAM = 0) ]
20 INPUTDOWNSTREAM;
21 }
22 s t a t e INPUTUPSTREAM {
23 ( ( ( OUTCANIdentifierDOWNSTREAM = 10)
24 => ( (TOSENDUPSTREAM = OUTCANIdentifierDOWNSTREAM ) and (TOSENDDOWNSTREAM =

12 + myAddress ) ) )
25 and
26 ( ( ( OUTCANIdentifierDOWNSTREAM = 11 + myAddress ) )
27 => (TOSENDUPSTREAM = 0) )
28 and
29 ( ( ( OUTCANIdentifierDOWNSTREAM = 11 + myAddress ) and ( smoke = t rue ) )
30 => (TOSENDDOWNSTREAM = 14) )
31 and
32 ( ( ( OUTCANIdentifierDOWNSTREAM = 11 + myAddress ) and ( smoke = f a l s e ) )
33 => (TOSENDDOWNSTREAM = 15) )
34 and
35 ( ( ( OUTCANIdentifierDOWNSTREAM = 11) and ( f a l s e ) )
36 => ( (TOSENDUPSTREAM = OUTCANIdentifierDOWNSTREAM ) and
37 (TOSENDDOWNSTREAM = 0) ) )
38 and
39 ( ( not ( ( OUTCANIdentifierDOWNSTREAM = 10) or
40 ( OUTCANIdentifierDOWNSTREAM = 11) ) )
41 => ( (TOSENDUPSTREAM = 0) and
42 (TOSENDDOWNSTREAM = 0) ) )
43 ) ;
44 t r a n s i t i o n [ OUTCANIdentifierDOWNSTREAM = 0]
45 NOINPUT ;
46 }
47 s t a t e INPUTDOWNSTREAM {
48 ( ( ( ( OUTCANIdentifierUPSTREAM = 13) or
49 ( OUTCANIdentifierUPSTREAM = 15) or
50 ( OUTCANIdentifierUPSTREAM = 14) )
51 => ( (TOSENDUPSTREAM = 0) and
52 (TOSENDDOWNSTREAM = OUTCANIdentifierUPSTREAM ) ) )
53 and
54 ( ( not ( ( OUTCANIdentifierUPSTREAM = 13) or
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55 ( OUTCANIdentifierUPSTREAM = 15) or
56 ( OUTCANIdentifierUPSTREAM = 14) ) )
57 => ( (TOSENDUPSTREAM = 0) and
58 (TOSENDDOWNSTREAM = 0) ) )
59 ) ;
60 t r a n s i t i o n [ OUTCANIdentifierUPSTREAM = 0]
61 NOINPUT ;
62 }
63 } ;
64 }
65
66 i n s t a n c e SDLOGIC SDlogic1 ;
67
68 v e r i f y {
69 a lways t rue ;
70 }

Listing A.2: Original Part of the Smoke Detection Model in GTL

A.2 Modified part with small PROMELA output

1 / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /
2 / / [ 2 . 4 . 2 ] S t a t e m a c h i n e SD LOGIC ( SIMPLIFIED )
3 / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /
4
5 model [ none ] SDLOGICsmall ( ” ” ) {
6 i n p u t bool smoke ;
7 i n p u t i n t myAddress ;
8 i n p u t i n t OUTCANIdentifierDOWNSTREAM ; / / OUTCAN<n> I d e n t i f i e r
9 i n p u t i n t OUTCANIdentifierUPSTREAM ; / / OUTCAN<n+1> I d e n t i f i e r

10 o u t p u t i n t TOSENDUPSTREAM;
11 o u t p u t i n t TOSENDDOWNSTREAM;
12 au tomaton {
13 i n i t s t a t e NOINPUT {
14 t r a n s i t i o n [ not ( OUTCANIdentifierDOWNSTREAM = 0) ]
15 INPUTUPSTREAM ;
16 t r a n s i t i o n [ not ( OUTCANIdentifierUPSTREAM = 0) ]
17 INPUTDOWNSTREAM;
18 }
19 s t a t e INPUTUPSTREAM {
20 / / SIMPLIFIED :
21 TOSENDDOWNSTREAM = OUTCANIdentifierUPSTREAM ;
22
23 t r a n s i t i o n [ OUTCANIdentifierDOWNSTREAM = 0]
24 NOINPUT ;
25 }
26 s t a t e INPUTDOWNSTREAM {
27 / / SIMPLIFIED :
28 TOSENDUPSTREAM = OUTCANIdentifierDOWNSTREAM ;
29 t r a n s i t i o n [ OUTCANIdentifierUPSTREAM = 0]
30 NOINPUT ;
31 }
32 } ;
33 }
34
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35 i n s t a n c e SDLOGICsmall S D l o g i c s m a l l ;
36
37 v e r i f y {
38 a lways t rue ;
39 }

Listing A.3: Simplified Part of the Smoke Detection Model in GTL
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Appendix B

Abbreviations used in the Smoke
Detection Case Study

BITE Built-in Test Equipment

CAN Controller Area Network

CBC Can Bus Control

CIDS Cabin Intercommunication and Data System

DEU-B Decoder/Encoder Unit, variant-B (middle-line)

DLC Data Length Code

DSL Domain-Specific Language

FEDC Fire Extinguishing Data Converter

GAC Globally Asynchronous Component

GALS Globally Asynchronous, Locally Synchronous

HSI Hardware Integration

LSC Locally Synchronous Component

MSB Most Signification Bit

S/D Smoke Detector

SDF Smoke Detection Facility

SUT System Under Test

UML Unified Modeling Language

XMI XML Metadata Interchange

XML eXtended Markup Language
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Appendix C

Appendix

Table C.1: Datatypedefinitions ”BahnUebergangsSteuerung”

Type name Data type Definition
TAZR Zustand Enumeration enum {AZRFrei,

AZRBelegt,
AZRGestoert,
AZRTestOB,
AZRKeinSignal}

TAZRKommando Enumeration enum {AZRKeinKommando,
AZRInit,
AZRTest,
AZRBelegtEmpfangen}

TSchrankeZustand Enumeration enum {SchrankeOffen,
SchrankeGeschlossen,
SchrankeUnbekannt,
SchrankeGestoert}

TSchrankeKommando Enumeration enum {SchrankeKeinKommando,
SchrankeOeffnen,
SchrankeSchliessen}

TStrassenSignalZustand Enumeration enum {StrasseRotAusGelbAus,
StrasseRotAusGelbAn,
StrasseRotAnGelbAus,
StrasseRotAnGelbAn,
StrasseGestoert,
StrasseTestOB,
StrasseKeinSignal}

TStrassenSignalKommando Enumeration enum {StrasseInit,
StrasseKeinKommando,
StrasseTest,
StrasseSichern,
StrasseEntsichern,
StrasseAus,
StrasseStoerung}

TUeberwachungZustand Enumeration enum {UeberwachungAn,
UeberwachungAus,
UeberwachungGestoert,

Continued on next page ...
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Table C.1 – ... continued from previous page
Type name Data type Definition

UeberwachungTestOB,
UeberwachungKeinSignal,
UeberwachungAn,
UeberwachungAus,
UeberwachungGestoert,
UeberwachungTestOB,
UeberwachungKeinSignal}

TUeberwachungKommando Enumeration enum {UeberwachungKeinKommando,
UeberwachungInit,
UeberwachungTest,
UeberwachungSichern,
UeberwachungEntsichern}

TUmgebungZug Enumeration enum {ZugVorhanden,
ZugAbwesend}

TUmgebungVerkehr Enumeration enum {VerkehrBlockiert,
VerkehrFrei}

TUmgebungKfz Enumeration enum {KfzRotAusGelbAus,
KfzRotAusGelbAn,
KfzRotAnGelbAus,
KfzRotAnGelbAn}

TUmgebungTfZug Enumeration enum {TfZugFahrtbegriff,
TfZugHaltbegriff}
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Figure C.1: Example of similar implementation for the initialization of subsystems.
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