
IQNITE2010

Jan Peleska, Oliver Möller

Testing on Target: Concepts and

Experiences

Prof. Dr. Jan Peleska
Centre for Computing Technologies, University of Bremen, Germany

Dr. M. Oliver Möller
Verified Systems International GmbH, Bremen, Germany

Jan Peleska, Oliver Möller

Overview

1. Motivation

2. Framework for testing on target

3. Test system requirements

4. Addressing technical problems

5. Experiences from 3 industrial projects

6. Conclusion

Jan Peleska, Oliver Möller

Motivation

• HW/SW integration testing with hardware-in-the-

loop (HIL) technology:

• Complete SW system is integrated on target

HW

• Advantage: system is tested in the same

configuration that will become operational later

on

• Disadvantage: some properties are

hard/expensive to test in the operational

configuration

• Example: SW reactions on HW faults

Jan Peleska, Oliver Möller

HW/SW integration testing

Test Engine

Control of actuators

x(t)

Observation of

sensor data

y(t)

Actuators/

Input interfaces

Sensors/

Output interfaces

Test Procedures

Jan Peleska, Oliver Möller

Motivation

• SW integration testing with software-in-the-loop

(SIL) technology on host computers:

• SW components or complete SW system are

tested on host computer – testing environment

simulates HW behaviour and operational

environment

• Advantage: all SW properties can be easily

stimulated

• Disadvantage: No proof of proper HW/SW

integration on the target HW

Jan Peleska, Oliver Möller

Motivation
• These considerations motivate SW-

integration testing on target HW

(SWI-on-target testing):

• System under test (SUT) components are executed

on target HW

• A portion of the testing environment is deployed on

the target HW and may

• Stimulate SUT components

• Replace/simulate drivers and HW where specific

responses from the environment are required

• Complex simulations and checks are deployed on

host computer (test engine)

Jan Peleska, Oliver Möller

SWI-on-target testing

Test Engine

x(t)

y(t)

Test Procedures

SUT HW

with partial SW

integration

Test

agents

SUT SW

component

Test Stubs

Original Drivers

Jan Peleska, Oliver Möller

Framework for testing on target

Required capabilities for SWI-on-target testing:

• Explicit SUT function calls

• Example: test of library or driver functions

• Definition and activation of complex scenarios to be

executed on the target

• Example: Simulation of load scenarios on target

• Replace SUT functions by stubs in order to simulate

different behaviours

• Example: Stub function simulates driver

response in a HW fault situation

Jan Peleska, Oliver Möller

Framework for testing on target

• Enable access to HW interfaces

• Example: Test of SUT driver software by

stimulating/monitoring SUT HW interfaces

• Enable glass-box view on the execution of SUT

components on target HW

• Example: Function calls and actual parameter

values

• Enable access to all test support functions which

are available in a SIL test on host computer

• Example: code coverage capture, test

documentation, test oracle calculation

Jan Peleska, Oliver Möller

Building block: remote function calls

• Example: test of function
t0 f(t1 x1,...,tn xn)

• Host side (test engine) runs test procedure where
call to y = f(x1,...,xn) is performed as if

locally available

• Host side call sends request
“Call y = f(x1,...,xn)”

to test agent on target, together with actual

parameter values x1,...,xn

• Test agent on target receives request, calls SUT
function f() and returns return value and out-

parameter values to test engine.

Jan Peleska, Oliver Möller

Remote function calls

Adapter for

inter-operation

with target

side

Test agent as

additional task

running on

target

Jan Peleska, Oliver Möller

Building block: stubbing SUT functions

on target
• Stubbing:

• Replacement of SUT function by test

environment function with identical interface

• Test environment controls stub behaviour

• Stubbed function behaviour

• is handled on host side (dynamically) and

passes computation results back to target

• can be used for fault injection

• can be used for checking call parameters

• use (cheap) host side mechanisms for logging,

check, simulation

Jan Peleska, Oliver Möller

Stubbing SUT functions on target

1. Target side stub

call is passed on to

host (test engine)

Jan Peleska, Oliver Möller

Stubbing SUT functions on target

1. Target side stub

call is passed on to

host (test engine)

2. Stub returns

and out

parameters are

calculated on

host and

returned to SUT

Jan Peleska, Oliver Möller

Building block: observing SUT

functions on target

• Similar to stubbing, but without changing original

function behaviour:

• Stub acts as wrapper around original function

to be called

• Inputs, return values and out-parameter values

are sent by wrapper stub from SUT to host

• Observed function calls are captured by

adapter on host-side

• Checking of these data is performed in test

procedure running on the host

Jan Peleska, Oliver Möller

Observing function calls

1. Calculations of

called function are

performed on target

Wrapper for f()
f()

Jan Peleska, Oliver Möller

Observing function calls

2. Observed

function call is

signalled to host –

host performs

parameter checks

1. Calculations of

called function are

performed on target

Wrapper for f()
f()

Jan Peleska, Oliver Möller

Adding Hardware I/O as part of the testing environment

Jan Peleska, Oliver Möller

Adding Hardware I/O: stubbing with HW I/O

Stub call (e.g. request)

is processed on host

and leads to HW input

to SUT (reply), to be

processed by SUT

software

Jan Peleska, Oliver Möller

Adding Hardware I/O: Function call observation and SUT HW

output checking

Library function

Driver

Call to library

function is

observed on host

and expected SUT

HW output is

checked

Jan Peleska, Oliver Möller

Building block: complex scenarios

• For many situations it does not suffice to call a single

function per test step

• Instead, a sequence of (timed) operations have to

be performed without any interruption

• Introduce on-target test logic:

• Add new functions to target object code

(written by the test designer)

• Trigger these functions via remote function calls

• New functions control scenarios with timed

sequence of SUT function calls

Jan Peleska, Oliver Möller

Specialization: Unit testing on target HW

Jan Peleska, Oliver Möller

Specialization: Unit testing on target HW

Test agent calls

SUT function f() –

f() calls SUT

function g() – g()

calls stubbed

driver – simulated

driver return is

calculated on host

– HW outputs of

g() can be

monitored on host

Jan Peleska, Oliver Möller

Specialization: SW integration testing on target HW

Jan Peleska, Oliver Möller

Specialization: SW integration testing on target HW

One or more SUT

tasks – test agent

allows

observation of

functions calls

and stubbing

where still

needed – SUT

HW outputs can

be observed on

host – HW inputs

to SUT can be

provided by host

Driver

Jan Peleska, Oliver Möller

Experiences – Project 1

• Multi-board embedded system (Airbus aircraft

cabin controller):

• Development of an inter-board communication library

layer (multiple CPU boards in one controller)

• 3 test agents (1 for each board) cooperating with host

side test procedure

• Approx. 50 requirements

• small team

• custom hardware

Jan Peleska, Oliver Möller

Experiences – Project 2

• Test of on-board Posix library layer for SysGo

PikeOS

• Embedded system is hosting several partitions

• SUT = C-standard library + C-mathematical library +

communication layer

• > 2000 requirements

• > 15 team members

• several target hardware platforms

• Emulation environment available (QEmu)

Jan Peleska, Oliver Möller

Experiences – Project 3

• Test of Rail Automation Library Layer for Siemens

• Embedded system with custom hardware

• Custom observation of Hardware Output (as test

environment input)

• Test-Agent replaces Application Logic

• Telegram based communication protocol 

Host/Target exchange via Telegrams; no remote

function calls/stubbing required

• > 50 requirements

• small teams (2-3 persons, 2 sites)

Jan Peleska, Oliver Möller

Conclusion

SWI-on-target testing complements conventional HW/SW

integration testing:

• Unit tests and SW-integration tests are already performed

on target HW with target machine code and linkage 

HW/SW integration-dependent errors are uncovered at

an early stage

• Major portion of code coverage can be achieved on

target HW

• Intrusive HW/SW integration testing can be avoided

since HW errors may be simulated by target-side stubs

• Observation of function call parameters enables glass-box

view on SUT

Jan Peleska, Oliver Möller

Conclusion

• Code-generation for adapters and test-agents can be

automated:

• Test designers can concentrate on test logic

• Successful application in 3 industrial projects –

more to come!

• Tool support available: Verified’s RT-Tester 6.x

• Other available features not discussed in this

presentation:

• Automated model-based test generation

• Automated structural testing

