leg

Model-Based Testing: Automated
Generation of Test Cases, Test Data, and
Test Procedures from SysML Models

Jorg Brauer and Jan Peleska

Verified Systems International GmbH
support@verified.de

Space Tech Expo Europe —2015-11-19

mailto:support@verified.de

Motivation

 Model-driven system and software
development has become an established best
practice — at least in certain application fields

* Model-based testing, however, is an active
research area, but many enterprises are
hesitant to adopt it as an integrated part of
their V&V processes

Motivation

* |n this presentation, it is explained why
— Model-based testing is fit for industrial application
— The return of investment into test model
development is significant, leading to
* reduced V&V costs

* increased test strength

* simpler accumulation of certification evidence

Overview

Workflow — overview

Test model development

Model-based requirements tracing

Test procedure generation and execution
Conclusions

Overview

Workflow — overview

Test model development

Model-based requirements tracing

Test procedure generation and execution
Conclusions

MBT Workflow

Test Model
Development

1

Requirements
Tracing

|

Traceable
Test Model

Test Case
Identification

Traceable
Test Cases

Test Data
Computation

!

Test Data per
Test Case

!

Test Procedure

Generation

Test
Procedures

Test Execution
and Evaluation

|

Test
Results

Compilation of
Traceability Data

Traceability
Matrix

MBT

Test Model
Development

|

Requirements
Tracing

Traceable
Test Model

VY ETIVE]

activities

Test Case
Identification

Traceable
Test Cases

Test Data
Computation

Test Data per
Test Case

Test Procedure

Generation

Test
Procedures

!

Test Execution
and Evaluation

}
(Rlsiias)

Compilation of
Traceability Data

Traceability
Matrix

Fully automated

activities

Test Model
Development

!

Requirements
Tracing

Traceable
Test Model

Traceable
Test Cases

Test Data
Computation

Test Data per
Test Case

Test Procedure

Generation

Test
Procedures

Test Execution
and Evaluation

}
(Rlsfas)

Compilation of
Traceability Data

Traceability
Matrix

Overview

Workflow — overview

Test model development

Model-based requirements tracing

Test procedure generation and execution
Conclusions

Test Model Development

* The test model specifies

— Interfaces between SUT and environment are
represented as readable or writable in the test
campaign

— Structural aspects — functional decomposition

— Behavioral aspects — transformation of inputs into
outputs, sequencing, synchronisation ...

* Two alternatives for test model creation and
utilisation (see next slides)

Validated Test Models — Variant 1

Development
Model

&

SUT
Integrated HW/
SW System

Model created by the
development team

Manually developed
or automatically generated
from development model

Redundant model
developed from
requirements by
the V&V team

Automatically
generated
from test model

F 3

HW/SW integration tests
check consistency of SUT

with test model

* Test Engine

Test Model

Test
Procedures

Validated Test Models — Variant 2

Development
and Test Model

Manually developed
or automatically generated
from model

Automatically generated
from model

Test
Procedures

SUT

Integrated HWJ < . . * Test Engine
SW System HW/SW integration tests

check consistency of SUT
with model

Overview

 Model-based requirements tracing

Model-Based Requirements Tracing

* Objective

— Link model elements to associated requirements
that are represented by these elements

— This allows us to identify test cases suitable for
verifying a given requirement in an automated

way
* SysMML is a system modeling language
providing (graphical and textual) syntax for

linking requirements to behavioral and
structural model elements

Model-Based Requirements Tracing

-
FLASHING‘

v

«satisfy»

[t.elapsed(320)]/

~

g

ON

Y

kE ntry/t.res et())

LampsLeft = 10Id;
LampsRight = rOld;

«requirement»

REQ-002Flashing with
340ms/320ms on-off periods

«satisfy»

< __________

[t.elapsed(340))/-

a

OFF

N

AN

Entry/t.reset();
LampsLeft = 0O;
LampsRight = O;
ctr = ctr + 1;

4

Overview

Workflow — overview

Test model development

Model-based requirements tracing

Test procedure generation and execution
Conclusions

Test Procedure Generation and
Execution

Test cases can be identified by evaluating the
links between model elements and requirements

The behavior expressed by the model can be
internally encoded by logical formulas

The test case is internally represented by a logical
formula as well

—> Concrete test data can be automatically
calculated using mathematical constraint solvers

Test Procedure Generation and
Execution

* For test procedure generation, users just
configure which test cases should be covered
by the procedure to be created

— Requirements-driven generation is performed by
identifying the requirement (or a subset of related
test cases) to be tested by the procedure

— Model-driven generation is performed by
identifying the model portions to be covered by
the test procedure

Requirements-Driven Test Procedure
Generation

I 1

Model | Requirements | Test Cases
— [@ REG-001

Indication lights are only active if the electrical voltage is = 10.3 and 14.0 V.
— @ REG-002

If any lights are flashing, this is done synchronously with a 340ms OMN - 32(¢
— [REG-003

Aninput change from TurnlndLvr = 0 or 2 toTurmnindLvr = 1 switches indicati
— [REQ-004

Aninput change from TumindLvr = 0 or 1 toTumindLvr = 2 switches indicati
— [REG-005

Aninput change from EmerFlash = 0 to EmerFlash = 1 switches indication lig
— [REG-006

Activation of the turn indication left or right overrides emergency flashing, if 1
— @ REG-007

If turn indication left or right is switched off and emergency flashing is still ac
~ [@ REQ-008

If emergency flashing is turned off and turn indication left or right is still activ
-| 2 Referenced Test Cases
© TC-turn_indication-HITR-0001
© TC-turn_indication-HITR-0002
© TC-turn_indication-TR-0005
© TC-turn_indication-UD-0001

_ B REQ-009

If turn indication left or right is switched off before three flashing periods ha

Model = Requirements Test Cases

Basic Control State Coverage

© TC-turn_indication-BCS-0001
© TC-turn_indication-BCS-0002
O TC-turn_indication-BC5-0003
© TC-turn_indication-BCS-0004
© TC-turn_indication-BCS-0005
U TC-turn_indication-BC5-0006
© TC-turn_indication-BCS-0007
© TC-turn_indication-BCS-0008
O TC-turn_indication-BC5-0009
© TC-turn_indication-BCS-0010

Basic Control State Pairs Coverage
Hierarchical Transition Coverage
MC/DC Transition Coverage

Transition Coverage

© TC-turn_indication-TR-0001
Cover transition of component IMR.SystemUnderTest. FLASH_CTRL
FLASH_CTRL.EMER_OFF
-- [IMR.EmerSwitch] --=>
FLASH_CTRL.EMER_ON

@ TC-turn_indication-TR-0002

Requirements:

Model Test Cases

Requirements

[@ REG-001
Indication lights are only active if the electrical volt3

@ REG-002

If any lights are flashing, this is done synchronously with a
[REG-003

Aninput change from TurnindLvr = 0 or 2 toTurnindLvr = 1 swj
[REQ-004

Aninput change from TumindLvr = 0 or 1 toTurmindLwvr =

@ REQ-005
Aninput change from EmerFlash = 0 to EmerFlash =

@ REQ-006

ion of the turn indication left or Thek

REQ-007
If turn indication left or right is switched g

[REG-008
If emergency flashing is turmed off and tumn indication left or
-| [2 Referenced Test Cases
¥ TC-turn_indication-HITR-0001
¥ TC-turn_indication-HITR-0002
O TC-turn_indication-TR-0005
U TC-turn_indication-UD-0001

@ REQ-009
If turn indication left or right is switched off a

gre three flashing

gency flashing, if 1
flashing is still ac

(ght is still activ

Requirements are
displayed with their
associated test cases, to
be selected for test
procedure generation

U TC-turn_indication-BC5-0006
© TC-turn_indication-BCS-0007
© TC-turn_indication-BCS-0008
O TC-turn_indication-BC5-0009
© TC-turn_indication-BCS-0010

Basic Control State Pairs Coverage
Hierarchical Transition Coverage
MC/DC Transition Coverage

Transition Coverage
© TC-turn_indication-TR-0001

FLASH_CTRL.EMER_OFF
-- [IMR.EmerSwitch] -->
FLASH_CTRL.EMER_ON

@ TC-turn_indication-TR-0002
P

periods ha

Cover transition of component IMR.SystemUnderTest. FLASH_CTRL

Model-Driven Test Procedure
Generation

1
Model | Requirements | Test Cases
- M SystemUnderTest
-/ M FLASH_CTRL
-/ « FLASH_CTRL
+ = |nitial
-1 @ EMER_OFF
— EmerSwitch
-| [2 Referenced Test Cases
© TC-turn_indication-BCS-0002
+ @ EMER_OM
+| [2 Referenced Test Cases
-/ M OUTPUT_CTRL
+ 8 QUTPUT_CTRL
+/ [2 Referenced Test Cases
TestEnvironment

Goals | Solver

Ordered Goals Add LTL
U TC-turn_indication-BCS-0001

Unordered Goals Add LTL
—* EmerSwitch CS| |BCSPAIRS| |HITR| MCDC TR
o EMER_ON BCS/ [BCSPAIRS HITR! MCDC| TR
M OUTPUT_CTRL BCS/ BCSPAIRS HITR MCDC/ TR
i OUTPUT_CTRL BCS/ [BCSPAIRS HITR! IMCDC| TR
[REG-001
Indication lights are only active if the electrical voltage is > 10.3 and 14.0 V.
[@ REQ-005

Aninput change from EmerFlash = O to EmerFlash = 1 switches indication ligl

© TC-turn_indication-TR-0001
Cover transition of component IMR.SystemUnderTest.FLASH_CTRL
FLASH_CTRL.EMER_OFF
-- [IMR.EmerSwitch] =
FLASH_CTRL.EMER_ON
% User Defined LTL Edit
Finally ([{{{IMR.5ystemUnderTest.pr_Decision '= &) && (IMR.5ystemUnderTes

L 2

Model browser allows

to select elements to be
covered by the test
’ﬁquimments Test Cases
SystemUnderTest p rOCEd U re

- M FLASH_CTEL
- «® FLASH_CTEL

& * Initial (g
=/ @ EMER_OFF — EmerSwitch [BCS| [(BCSPAIRS (HITR| MEDE TR
— EmerSwitch O EMER_ON BCS| [BCSPAIRS| HITR' (MCDC| TR/
= [Z Referenced Test Cases M OUTPUT_CTRL BCS| BCSPAIRS HITR MCDC TR/
© TC-turn_indication-BCS-0002 4 OUTPUT_CTRL BCS' [BCSPAIRS| [HITR/ MCDC/ TR/
+ @ EMER_ON @ REQ-001
+/ [2 Referenced Test Cases Indication lights are only active if the electrical voltage is » 10.3 and 14.0 V.
- M OUTPUT_CTRL [@ REQ-005

Aninput change from EmerFlash = O to EmerFlash = 1 switches indication ligl
@ TC-turn_indication-TR-0001
Cover transition of component IMR.SystemUnderTest.FLASH_CTRL
FLASH_CTRL.EMER_QFF
-- [IMR.EmerSwitch] --=
FLASH_CTRL.EMER_OM
W User Defined LTL Edit|
Finally ([{{{IMR.5ystemUnderTest.pr_Decision '= &) && (IMR.5ystemUnderTes

& & OUTPUT_CTRL

s > < 3

Test Procedure Generation and
Execution

* 6 Different testing strategies are supported

— Simple: Basic control state coverage, Transition
coverage, Hierarchic transition coverage.

— Complex:

* MC/DC coverage. Complex guard conditions are exercised
with different valuations of their atomic condition parts

* Basic control state pairs coverage. Interacting state machine
pairs are tested in every possible state combination

* Equivalence class testing strategy. Inputs with large data
types are automatically partitioned into equivalence classes

Test Procedure Generation and
Execution

* Applicable strategies can be automatically
adapted to the criticality of SUT component
under consideration

— For DAL-C components, transition coverage
typically suffices

— For DAL-A components, the more complex
strategies have to be applied as well

Overview

Workflow — overview

Test model development

Model-based requirements tracing

Test procedure generation and execution
Conclusions

Conclusions

 Model-based testing is fit for large-scale
application in industry

e Efficiency measurements performed by Verified
Systems show that the following effort reductions
in comparison to conventional testing approaches
can be expected

— 30% for a new project, where a new test model has to
be created

— 90% in the best case, where an optimised re-usable
workflow has been set up for regular regression
testing of a long-lived product

