
Transfer Function Synthesis without
Quantifier Elimination

Jörg Brauer1 and Andy King2

1 Embedded Software Laboratory, RWTH Aachen University, Germany
2 Portcullis Computer Security Limited, Pinner, UK

Abstract. Recently it has been shown how transfer functions for linear
template constraints can be derived for bit-vector programs by operating
over propositional Boolean formulae. The drawback of this method is
that it relies on existential quantifier elimination, which induces a compu-
tational bottleneck. The contribution of this paper is a novel method for
synthesising transfer functions that does not rely on quantifier elimination.
We demonstrate the practicality of the method for generating transfer
functions for both intervals and octagons.

1 Introduction

In model checking [3] the behaviour of a system is formally specified with a
model. All paths through the program are then exhaustively checked against its
requirements. The detailed nature of the requirements entails that the program
is simulated in a fine-grained way, sometimes down to the level of individual
bits. Because of the complexity of this reasoning there has been much interest
in representing states of a program symbolically, as Boolean functions, which
enables states that share commonality to be represented without duplicating
their commonality.

The key idea in abstract interpretation [10] is to abstract away from the
detailed nature of states. Then the program checker operates over classes of
related states — collections of states that are equivalent in some sense — rather
than individual states. If the number of classes is small, then all the paths through
the program can be examined without incurring the problems of state-space
explosion. When carefully constructed, the classes of states can preserve sufficient
information to prove correctness. However, sometimes so much detail is lost when
working with classes that the technique cannot infer useful information. This is
because it critically depends on the expressiveness of the classes and the class
transformers chosen to model the instructions that arise in the program. Class
transformers are traditionally known as transfer functions [16]; they express how
input states are mapped to output states by an instruction. If an input state
is described by a class, then the transfer function is required to simulate the
execution of the instruction by computing a class which faithfully describes the
output state. Constructing transfer functions is difficult, especially when the
instructions are low-level and operate over finite machine arithmetic. This is



because classes are themselves expressed as high-level geometric concepts such as
affine and polyhedral spaces, presenting a semantic gap that has to be bridged.

The seminal work of Reps and his colleagues [29] advocated the automatic
synthesis of transfer functions, though recently the topic has attracted increasing
attention [6, 19, 23] because of the desire to generate transfer functions for blocks
rather than single instructions. This can improve precision when there is a close
coupling between the operations that constitute a block [19], which is often
the case when recovering high-level semantics from assembly code, for instance,
recovering a 16-bit addition from two consecutive 8-bit additions with carry.

1.1 Deriving transfer functions by quantifier elimination

Boolean formulae are germane to the problem of transfer function synthesis since
the semantics of blocks are naturally represented as input-output relations — a
technique that is colloquially referred to as bit-blasting [7]. This formulation
of the semantics of a block dovetails with the quantifier-based approach [23] to
transfer function synthesis since, when a formula is presented in CNF, existential
and universal quantifier elimination can be realised straightforwardly [20].

To illustrate the role of quantification, suppose a formula models a block
that mutates a single register whose values on entry and exit are represented
by bit-vectors x and x′, respectively. To derive a transfer function for interval
analysis, it is necessary to ascertain how the maximal value of x′, denoted x′u,
relates to the minimal and maximal values of x, denoted x` and xu. The value of
x′u can be specified in logic [6, 23] by asserting that: (i) for every value of x that
falls in the interval [x`,xu], the value of x′u is greater or equal to x′, and (ii) for
some value of x in [x`,xu], the output x′ takes the value of x′u. The “for some”
can be expressed with existential quantification, but the “for every” can only be
expressed with universal quantification. By applying quantifier elimination, a
direct relationship between x`, xu, and x′u can be found, yielding a mechanism
for computing x′u in terms of xl and xu.

1.2 The drawbacks of quantifier elimination

Transfer function synthesis thus involves eliminating quantified variables from
∀y : ϕ where ϕ is a system of propositional constraints and y is a tuple of variables.
When ϕ is propositional, a CNF formula ψ that is equisatisfiable, denoted ≡, to
ϕ can be straightforwardly found [27] by introducing fresh variables, denoted z,
to give ϕ ≡ ∃z : ψ. The transfer function synthesis problem then amounts to
solving ∀y : ∃z : ψ where ψ is in CNF. Alternating quantifiers also arise when
transfer functions are synthesised from piece-wise linear constraints [23].

To eliminate existentially quantified variables, resolution [20, Chap. 9.2.3]
is applied, which may be prohibitively expensive: the quadratic nature of each
resolution step compromises tractability as the size of z increases. The size of z
is proportional to the number of logical connectives in ϕ which, in turn, depends
on the size of the bit-vectors and the complexity of the block under consideration.
It is therefore no surprise that this approach has only been demonstrated for

2



blocks of microcontroller code where the word-size is just 8 bits [6]. Thus far, the
complexity of resolution has thwarted the wider applicability of this technique,
even when applied carefully, which motivates the search for alternative methods.

1.3 Avoiding quantifier elimination

Our contribution is to eliminate the need for existential quantifier elimination
altogether and replace resolution with successive calls to a SAT solver, where
the number of calls grows linearly with the word-size. To illustrate, consider an
octagon [22] which consists of a system of inequalities of the form ±x± y ≤ d.
For each of these inequalities, our approach derives the least d ∈ Z (which is
uniquely determined) such that the inequality holds for all feasible values of x
and y as defined by some predicate.

As an example, consider the inequality x+ y ≤ d. The constant d is charac-
terised as d = min{c ∈ Z | ∀x : ∀y : P (x,y) ∧ (x + y ≤ c)} where P (x,y) is a
predicate constraining the values of bit-vectors x and y. Further, given a machine
with word-length w, the maximal value in an unsigned representation is given as
2w − 1, and thus we can derive an initial constraint 0 ≤ d∧ d ≤ 2 · (2w − 1) for d,
which can be expressed disjunctively as µ` ∨ µu where:

µ` = (0 ≤ d ∧ d ≤ 2w − 1) µu = (2w ≤ d ∧ d ≤ 2 · (2w − 1))

To determine which disjunct characterises d, it is sufficient to test the formula
∃x : ∃y : P (x,y)∧ (x+y ≥ 2w) for satisfiability. If satisfiable, then µu is entailed
by d, and µ` otherwise. We proceed by decomposing the new characterisation
into a disjunction and repeating this step w times to give d exactly. When a
transfer function is formulated as a system of guarded affine updates [6, Sect. 2]
then this range refinement technique can be applied to synthesise guards on the
input values of variables.

The second contribution is to finesse the need for quantifier elimination in
the generation of the input-output transformers that constitute the updates of
the transfer functions. We demonstrate this construction not only for intervals,
but for transfer functions over octagons. The method is based on computing
an affine abstraction of a Boolean formula. Operationally, an update is applied
to those inputs that satisfy the respective guard; the update details how the
bounds of an input interval are mapped to new bounds of an output interval.
In the case of octagons, the update maps the constants on the input octagonal
inequalities to new constants on the output inequalities. Deriving updates for
octagons requires range refinement to be interleaved with affine abstraction,
which represents a third contribution. As a fourth contribution, we suggest a
simple way of evaluating these transfer functions.

1.4 Outline of the approach

Overall, the paper proposes a systematic technique for inferring transfer functions
that are defined as systems of guarded updates. Transfer functions are inferred

3



for a block by modeling each instruction as one of (at most) three Boolean
functions, according to whether it overflows, underflows or does neither (is exact).
A mode combination is then chosen for each instruction, and a single Boolean
formula is constructed for the block by composing a formula for each instruction
in the prescribed mode. If the composed formula is unsatisfiable, then the mode
combination is inconsistent. Otherwise the mode combination is feasible and
describes one type of wrapping (or non-wrapping) behaviour that can be realised
within the block. The formula is then used to distill a guard paired with an
update; one pair is computed for each feasible mode combination.

The guard, which is the optimal octagonal abstraction of the formula, is
constructed one octagonal constraint at a time, by applying a form of dichotomy
search, which amounts to a series of calls a SAT solver, as is explained in Sect. 2.
The update component of the pair specifies how, when the guard is satisfied, the
constraints in an input octagon are mapped to constraints in the output octagon
(or in the degenerative case how to adjust bounds on intervals). Computing the
update amounts to inferring a relationship between the bound on an output
constraint and the bounds on the input constraints. Such a relationship can
again be derived by repeated SAT solving, as detailed in Sect. 3. Replicating this
construction for each of the output constraints gives the update operation for
the feasible mode combination.

All these techniques are illustrated for blocks of 32-bit AVR UC3 assembly
code [1], though the techniques are completely generic. We present experimental
evidence in Sect. 5 which shows that the techniques presented in the paper are
able to synthesise transfer functions for blocks where previous approaches based
on quantifier elimination were prohibitively expensive. Sect. 6 surveys the related
work and Sect. 7 concludes.

2 Deriving Guards

We express the concrete semantics of a block with Boolean formulae. Whereas
universal quantifier elimination is attractive computationally, this is not so for
the elimination of existentially quantified variables. We overcome this problem
by reformulating the construction given in [6] for the synthesis of guards.

2.1 Deriving interval guards by range refinement

Consider deriving a transfer function for the operation INC R0, which increments
the value of R0 by one and stores the result in R0. For this example, we assume
that the operands are unsigned. We represent the value of R0 by a bit-vector
r0 and let 〈r0〉 =

∑31
i=0 2i · r0[i] where r0[i] denotes the ith element of r0.

The instruction itself can operate in one of two modes: (1) it overflows (iff
〈r0〉 = 232 − 1) or (2) it is exact (otherwise). The semantics of these two modes
can be expressed as two formulae:

(1) ϕO(X) = ϕ(X) ∧ (
∧31
i=0 r0[i])

(2) ϕE(X) = ϕ(X) ∧ (
∨31
i=0 ¬r0[i])

4



where ϕ(X) encodes the increment over bit-vectors X = {r0, r0′} as follows:

ϕ(X) =
∧31
i=0

(
r0′[i]↔ r0[i]⊕

∧i−1
j=0 r0[j]

)
Both formulae can be converted into CNF by introducing fresh variables z. We
therefore denote the resulting formulae by ϕE(X, z) and ϕO(X, z). Following
our initial approach [6], the transfer function for a multi-modal block (where the
internal instructions can wrap) is described as a system of guarded updates. In
the one-dimensional case, octagonal guards coincide with intervals. Each guard
constitutes an upper-approximation of those inputs that are compatible with the
specific mode. In case of the increment, we derive guards gO and gE defined as:

(1) gO = 232 − 1 ≤ 〈r0〉 ≤ 232 − 1

(2) gE = 0 ≤ 〈r0〉 ≤ 232 − 2

To obtain these guards, we solve a series of SAT instances, rather than following
a monolithic all-in-one approach based on quantifier elimination [6]. To illustrate,
consider the computation of a least upper bound d for 〈r0〉 for the formula
ϕE(X, z). We start by putting:

ψ1
E(X, z) = ϕE(X, z) ∧ 〈r0〉 ≥ 231

As 231 is a power of two, we can finesse the need for a complicated Boolean
encoding of the predicate ≥ by using the equivalent formula:

ψsimp,1
E (X, z) = ϕE(X, z) ∧ r0[31]

which is simpler both to formulate and to solve. Then, the satisfiability of
ψsimp,1
E (X, z) shows that r0 takes a value in the range 231 ≤ 〈r0〉 ≤ 232 − 1.

Consequently, d occurs in the same range. We can thus further refine this range
by testing:

ψ2
E(X, z) = ϕE(z) ∧ 〈r0〉 ≥ (231 + 230)

for satisfiability, or equivalently ϕsimp,2
E (X, z) = ϕE(z) ∧ r0[31] ∧ r0[30]. As

ψsimp,2
E (X, z) is satisfiable, we infer that d satisfies 230 + 231 ≤ d ≤ 232 − 1. The

method continues to refine the constraint on d into two equally sized halves.
Only in the last iteration is the satisfiability check found to fail from which we
conclude that d =

∑31
i=1 2i = 232 − 2. Overall, this deduction requires 32 SAT

instances, but the similarity of the instances suggests that the overhead can be
mitigated somewhat by incremental SAT.

2.2 Deriving octagonal guards by range refinement

In a second example, we show how to extend the refinement technique from
intervals to octagons. To illustrate the method, consider the following fragment:

1 : ADD R0, R1; 2 : MOV R2, R0; 3 : EOR R2, R1; 4 : LSL R2;
5 : SBC R2, R2; 6 : ADD R0, R2; 7 : EOR R0, R2;

5



This program corresponds to an assignment R0’ := isign(R0+R1,R1) for signed
values. The function isign assigns abs(R0+R1) to R0 if R1 is positive, and
-abs(R0+R1) otherwise. R2 is used as a temporary register. The sum of R0 and
R1 is computed by instruction (1), and instructions (2) – (7) implement isign.
The semantics of even this simple block is not obvious due to the bounded
nature of machine arithmetic. For instance, if abs is applied to the smallest
representable integer −231 then the result is 231 subject to overflow, which gives
−231. To derive octagons that describe such corner cases, we have to consider
all combinations of over- and underflow modes of the instructions. In the above
program, the instructions ADD (sum) and LSL (left-shift) can wrap in different
ways, and thus are multi-modal. Neither EOR nor MOV can wrap; they are both
uni-modal. Note that in general, the instruction SBC (subtract-with-carry) is
multi-modal. However, in the case of two equal operands, the instruction can
only result in 0 or −1, depending on the carry-flag. We thus ignore the wrapping
of SBC R2, R2 and consider it to be uni-modal for simplicity. Note that only
overflows occurred in the previous example since the single operand was unsigned.

Finding the feasible mode-combinations In what follows, let µ(X) de-
note the Boolean encoding of the instruction ADD R0, R1 over bit-vectors X =
{r0, r1, . . . } obtained through static single assignment conversion. The semantics
of ADD R0, R1 is to compute the sum of R0 and R1 and store the result in R0. Since
we are now working with signed objects, let 〈〈x〉〉 = (

∑w−2
i=0 2i ·x[i])−2w−1 ·x[w−1]

denote the value of x where x[31] is interpreted as the sign-bit. Then, ADD R0, R1

has three modes of operation: overflow, underflow and exact operation. Underflow
occurs, for example, if the arithmetic sum of 〈〈r0〉〉 and 〈〈r1〉〉 is less than −231.
The semantics of these modes can be expressed as three Boolean formulae:

µO(X) = µ(X) ∧ ¬r0[31] ∧ ¬r1[31] ∧ r0′[31]
µU (X) = µ(X) ∧ r0[31] ∧ r1[31] ∧ ¬r0′[31]
µE(X) = µ(X) ∧ (r0[31] ∨ r1[31] ∨ ¬r0′[31]) ∧ (¬r0[31] ∨ ¬r1[31] ∨ r0′[31])

The instruction LSL R2 shifts R2 to the left by one bit-position, and the most-
significant bit is moved into the carry-flag. If the carry-flag is set, an overflow
occurs. Let νO(X) and νE(X) thus express the overflow and exact modes of LSL
R2. In an analogous way to the first ADD, let ηO(X), ηU (X) and ηE(X) express
the semantics of the instruction ADD R0, R2. Using these encodings that satisfy
a single mode, we can compose a Boolean formula for a fixed mode-combination
that expresses the possibility of one mode of one operation being consistent with
another mode of another operation; the unsatisfiability of this formula indicates
that the chosen modes are inconsistent. For example, the combination of µU (X),
νE(X) and ηE(X) is infeasible. The above block constitutes 3 · 2 · 3 combinations
of modes, but only 6 of which are satisfiable. We thus have to derive guards only
for the feasible combinations.

Deriving guards for the feasible mode-combinations Consider the case
where (1) underflows, (4) overflows and (6) is exact, with the corresponding

6



formula denoted ξ(X). To derive an octagonal abstraction of the inputs that
satisfy ξ(X), first consider the problem of computing the least upper bound d for
the octagonal expression −〈〈r0〉〉 − 〈〈r1〉〉. To do so, let κ be a formula encoding
〈〈d〉〉 = −〈〈r0〉〉 − 〈〈r1〉〉 where d is signed and κ is extended to 34 bits to prevent
wraps in the octagonal expression (cp. [9, Sect. 3.3]). Then check:

ψ1(X) = ξ(X) ∧ κ ∧ ¬d[33]

for satisfiability to derive a coarse approximation of d. The satisfiability of ψ1(X)
shows that d ≥ 0. We thus proceed with testing:

ψ2(X) = ξ(X) ∧ κ ∧ ¬d[33] ∧ d[32]

for satisfiability. Satisfiability of ψ2(X) shows that d ≥ 232. Following this
strategy, the remaining instantiated formulae are unsatisfiable, and we thus
infer the exact bound 〈〈d〉〉 = 232. Rearranging −〈〈r0〉〉 − 〈〈r1〉〉 ≤ 232 we obtain
−232 ≤ 〈〈r0〉〉+ 〈〈r1〉〉. Using the same tactic, we derive 〈〈r0〉〉+ 〈〈r1〉〉 ≤ −231− 1.
Repeating this tactic for all five feasible mode-combinations, we obtain the
following optimal octagonal guards:

gO(1),O(4),U(6) = 231 ≤ 〈〈r0〉〉+ 〈〈r1〉〉 ≤ 231 ∧ 0 ≤ 〈〈r1〉〉 ≤ 231 − 1
gE(1),E(4),E(6) = −231 ≤ 〈〈r0〉〉+ 〈〈r1〉〉 ≤ 231 − 1
gU(1),O(4),E(6) = −232 ≤ 〈〈r0〉〉+ 〈〈r1〉〉 ≤ −231 − 1
gE(1),O(4),E(6) = 0 ≤ 〈〈r0〉〉+ 〈〈r1〉〉 ≤ 231 − 1 ∧ −231 ≤ 〈〈r1〉〉 ≤ 1
gO(1),O(4),E(6) = 231 + 1 ≤ 〈〈r0〉〉+ 〈〈r1〉〉 ≤ 232

Redundant inequalities, which are themselves entailed by the given guards, are
omitted for clarity of presentation.

Complexity A total of 4 · 34 + 4 · 33 SAT instances is solved for each guard.
This is due to the bit-extended representation for constraints ±v1 ± v2 ≤ d,
whereas 33 bits are used for constraints ±v1 ≤ d. While this may appear large,
it is important to appreciate that the number of SAT instances grows linearly
with the bit-width. By way of comparison with [6], adding a single propositional
variable to a formula can increase the complexity of resolution quadratically.

3 Deriving Updates

Transformers over template constraints have been previously formulated using
quantification [6, 23]. To avoid this, we derive affine relationships between out-
put variables and input variables. These relations are then lifted to symbolic
constraints that detail how the bounds of an input interval are mapped to the
bounds of an output interval. The technique is then refined to support octagons.
Note that Sect. 3.2 and Sect. 3.3 are just given for pedagogical purposes; only
Sect. 3.4 provides a linear symbolic update operation that is optimal.

7



3.1 Inferring affine equalities

Our algorithm computes an affine abstraction of the models for a given mode-
combination. To solve for affine input-output relations, let X denote the set of
bit-vectors as before. Consider the Boolean formula ξ(X) for the case where
(1) underflows, (4) overflows and (6) is exact. The process of deriving an affine
abstraction follows the scheme given in [6, Sect. 3.2]. It starts with solving the
formula ξ(X), which produces a model m1 where:

m1 =
{
〈〈r0′〉〉 = −231 , 〈〈r1′〉〉 = −1 , 〈〈r0〉〉 = −231 + 1 , 〈〈r1〉〉 = −1

}
We can equivalently write m1 as a matrix, denoted M1. With variable ordering
〈r0′, r1′, r0, r1〉 on columns, this gives:

M1 =


1 0 0 0 −231

0 1 0 0 −1
0 0 1 0 −231 + 1
0 0 0 1 −1


We then add a disequality constraint 〈〈r1〉〉 6= −1 to ξ(X) in order to obtain a
new solution that is not covered by M1. Denote this formula by ξ′(X). Then,
solving for ξ′(X) produces a different model m2, say:

m2 =
{
〈〈r0′〉〉 = −231 + 2 , 〈〈r1′〉〉 = −3 , 〈〈r0〉〉 = −231 + 1 , 〈〈r1〉〉 = −3

}
Joining M1 with M2, which is likewise obtained from m2, yields a matrix that
describes that affine relations common to both models:

M1 tM2 =


1 0 0 0 −231

0 1 0 0 −1
0 0 1 0 −231 + 1
0 0 0 1 −1

 t


1 0 0 0 −231 + 2
0 1 0 0 −3
0 0 1 0 −231 + 1
0 0 0 1 −3

 =

1 1 0 0 −231 − 1
0 1 0 −1 0
0 0 1 0 −231 + 1


Our algorithm now attempts to find a model that violates the constraint given
through the last row, that is, 〈〈r0〉〉 = −231 + 1. Adding a disequality constraint
to ξ′(X) yields a new formula ξ′′(X), for which a SAT solver finds a model:

m3 =
{
〈〈r0′〉〉 = −231 , 〈〈r1′〉〉 = −4 , 〈〈r0〉〉 = −231 + 4 , 〈〈r1〉〉 = −4

}
Then, we join M1 tM2 with M3 to give:1 1 0 0 −231 − 1

0 1 0 −1 0
0 0 1 0 −231 + 1

 t


1 0 0 0 −231

0 1 0 0 −4
0 0 1 0 −231 + 4
0 0 0 1 −4

 =

[
1 0 1 1 −232

0 1 0 −1 0

]

Adding a disequality constraint to suppress 〈〈r1′〉〉 − 〈〈r1〉〉 = 0 yields an unsatis-
fiable formula, likewise for 〈〈r0′〉〉+ 〈〈r1〉〉+ 〈〈r0〉〉 = −232. Indeed, we have

(M1 tM2) tM3 =
⊔
i∈N Mi

8



where Mi are matrices describing different models mi of ξ(X). Indeed, an affine
summary of a mode-combination is in some sense universally quantified, since its
relation is satisfied by every model. Moreover (M1 tM2) tM3 represents the
best affine abstraction of ξ(X) [6, 19]. The resulting equations, however, express
relationships between variables but not between symbolic intervals. As it turns
out, we can lift (M1tM2)tM3 to an equation system over intervals by applying
a set of straightforward transformations.

Complexity Note that the chain-length in the affine domain is linear in the
number of variables in the system [18]. Thus, the number of iterations required
to compute a fixed point is bounded by the number of variables and does not
depend on the bit-width.

3.2 Lifting affine equalities to interval updates

We explain how to transform (M1 tM2) tM3 over variables in X into an
equation system over range boundaries. To do so, let V ⊆ X denote the bit-
vectors on entry of the block, and let V ′ ⊆ X denote the bit-vectors on exit.
Further, introduce fresh variables

V ` = {r0`, r1`} V u = {r0u, r1u} V ′` = {r0′`, r1′`} V ′u = {r0′u, r1′u}

and if necessary transform the equations such that the left-hand side consists of
only one variable in V ′. For the above equations, this gives:

〈〈r1′〉〉 = 〈〈r1〉〉
〈〈r0′〉〉 = −〈〈r0〉〉 − 〈〈r1〉〉 − 232

These equations imply the following affine relations on interval boundaries:

〈〈r1′〉〉u = 〈〈r1′〉〉u 〈〈r0′〉〉u = −〈〈r1〉〉` − 〈〈r0〉〉` − 232

〈〈r1′〉〉` = 〈〈r1′〉〉` 〈〈r0′〉〉` = −〈〈r1〉〉u − 〈〈r0〉〉u − 232

To derive such as system, transform each of the original equations into the form
λv′ ·v′ =

∑
v∈V λv ·v+d where v′ ∈ V ′, λv′ > 0 and λv ∈ Z for all v ∈ V . This

can always be achieved due to the variable ordering. For example, the system
below on the left can be transformed into the system on the right by applying
elementary row operations:[

1 −1 0 0 1
0 1 0 −1 2

]
 

[
1 0 0 −1 3
0 1 0 −1 2

]
Note that the leading coefficients are positive. We then replace each original
equation by a pair of equations as follows:

λv′ · v′u =
∑

v∈X λv · β(λv,v) + d
λv′ · v′` =

∑
v∈X λv · β(−λv,v) + d

9



The map β : Z × V → (V ` ∪ V u) is defined as β(λ,v) = v` if λ < 0 and
β(λ,v) = vu otherwise. The key idea when constructing the upper bound is to
replace each occurrence of a variable in the original system with its upper bound
in case its coefficient is positive, and with its lower bound otherwise. This task
is performed by β. An analogous technique is applied when defining the lower
bound. Applying this technique to all affine systems, we obtain the following five
transfer functions (with the identity constraints on r1′` and r1′u omitted):

fO(1),O(4),U(6) =

{
(〈〈r0′〉〉` = −231) ∧
(〈〈r0′〉〉u = −231)

fE(1),E(4),E(6) =

{
(〈〈r0′〉〉` = 〈〈r0`〉〉+ 〈〈r1`〉〉) ∧
(〈〈r0′〉〉u = 〈〈r0u〉〉+ 〈〈r1u〉〉)

fU(1),O(4),E(6) =

{
(〈〈r0′〉〉` = −232 − 〈〈r0u〉〉 − 〈〈r1u〉〉) ∧
(〈〈r0′〉〉u = −232 − 〈〈r0`〉〉 − 〈〈r1`〉〉)

fE(1),O(4),E(6) =

{
(〈〈r0′〉〉` = −〈〈r0u〉〉 − 〈〈r1u〉〉) ∧
(〈〈r0′〉〉u = −〈〈r0`〉〉 − 〈〈r1`〉〉)

fO(1),O(4),E(6) =

{
(〈〈r0′〉〉` = 232 − 〈〈r0u〉〉 − 〈〈r1u〉〉) ∧
(〈〈r0′〉〉u = 232 − 〈〈r0`〉〉 − 〈〈r1`〉〉)

To illustrate the accuracy of this result, consider the application of the transfer
function fU(1),O(4),E(6) to the input intervals defined by:

〈〈r0`〉〉 = −231 〈〈r0u〉〉 = −231 + 4 〈〈r1`〉〉 = −20 〈〈r1u〉〉 = −10

Then, the above transfer function defines the output intervals by modelling the
wrap that occurs in the first instruction ADD R0 R1 to give 〈〈r0′`〉〉 = −231 + 6
and 〈〈r0′u〉〉 = −231 + 20.

3.3 Lifting affine equalities to octagonal updates

Consider deriving a transfer function for octagons for ADD R0 R1; LSL R0 where
ADD and LSL operate in exact modes. Computing the affine relation for this
mode-combination gives (〈〈r0′〉〉 = 2 · 〈〈r0〉〉+ 2 · 〈〈r1〉〉) ∧ (〈〈r1′〉〉 = 〈〈r1〉〉). We
aim to construct an update that maps octagonal input constraints with symbolic
constants to octagonal outputs likewise with symbolic constants of the form:

〈〈r0〉〉 ≤ d1
〈〈r1〉〉 ≤ d2
−〈〈r0〉〉 ≤ d3
−〈〈r1〉〉 ≤ d4

〈〈r0〉〉+ 〈〈r1〉〉 ≤ d5
−〈〈r0〉〉 − 〈〈r1〉〉 ≤ d6
−〈〈r0〉〉+ 〈〈r1〉〉 ≤ d7
〈〈r0〉〉 − 〈〈r1〉〉 ≤ d8


 



〈〈r0′〉〉 ≤ 2 · (d1 + d2)
〈〈r1′〉〉 ≤ d2
−〈〈r0′〉〉 ≤ 2 · (d3 + d4)
−〈〈r1′〉〉 ≤ d4

〈〈r0′〉〉+ 〈〈r1′〉〉 ≤ 2 · d1 + 3 · d2
−〈〈r0′〉〉 − 〈〈r1′〉〉 ≤ 2 · d3 + 3 · d4
−〈〈r0′〉〉+ 〈〈r1′〉〉 ≤ 2 · (d3 + d4) + d2
〈〈r0′〉〉 − 〈〈r1′〉〉 ≤ 2 · (d1 + d2) + d4


We start by constructing an update operation that uses the unary input con-
straints only, as indicated by the bar separator. We modify the method presented

10



Table 1. Intermediate results for inferring exact affine transformers for octagons

〈〈d′
1〉〉 〈〈d1〉〉 〈〈d2〉〉 〈〈d3〉〉 〈〈d4〉〉 〈〈d5〉〉 〈〈d6〉〉 〈〈d7〉〉 〈〈d8〉〉 max(〈〈d′〉〉)

m1 1 1 1 0 0 1 0 1 1 2
m2 8 3 3 −1 −1 5 −2 2 0 10
m3 22 8 7 0 1 13 3 4 0 26
m4 4 0 3 2 0 3 1 6 3 6

in Sect. 2.4 so as to express output constraints in terms of symbolic variables
d1, . . . , d4 from the input constraints. We obtain the four output unary constraints
by an analogous technique as before by substituting the symbolic minima and
maxima for the symbolic output constants. The binary output constraints are
derived by linear combinations of the unary output constraints.

Since the output constraints do not use relational information from the inputs,
such as 〈〈r0〉〉+〈〈r1〉〉 ≤ d5, we obtain a sub-optimal update. To illustrate, suppose
0 ≤ 〈〈r0〉〉 ≤ 4, 0 ≤ 〈〈r1〉〉 ≤ 1 and 〈〈r0〉〉+ 〈〈r1〉〉 ≤ 4. Then we derive:

0 ≤ 〈〈r0′〉〉 ≤ 10 0 ≤ 〈〈r1′〉〉 ≤ 1 0 ≤ 〈〈r0′〉〉+ 〈〈r1′〉〉 ≤ 11

The optimal octagonal abstraction, however, confers the constraints 〈〈r0′〉〉 ≤ 8
and 〈〈r0′〉〉+ 〈〈r1′〉〉 ≤ 8. Although the above method fails to propagate the effect
of some inputs into the outputs, it retains the property that the update can be
constructed straightforwardly in linear time by lifting the affine relations. In
what follows, we will describe how to derive more precise affine relations for the
outputs.

3.4 Inferring affine inequalities for octagonal updates

To derive more precise affine updates for octagons, let ξ(X) denote the propo-
sitional encoding for ADD R0 R1; LSL R0 where again ADD and LSL operate in
exact modes. Consider inequality 〈〈r0′〉〉 ≤ d′1 in the output octagon and in
particular the problem of discovering a relationship between d′1 and the symbolic
constants d1, . . . , d8 of the input octagon, as detailed previously.

We proceed by introducing signed 34-bit vectors d1, . . . ,d8 to represent the
symbolic constants d1, . . . , d8. Further, let κ denote a Boolean formula that holds
iff the eight inequalities 〈〈r0〉〉 ≤ 〈〈d1〉〉, . . . , 〈〈r0〉〉−〈〈r1〉〉 ≤ 〈〈d8〉〉 simultaneously
hold. Furthermore, let η denote a formula that encodes the equality 〈〈r0′〉〉 = 〈〈d′

1〉〉
where d′

1 is a signed bit-vector representing d′1. Presenting the compound formula
κ ∧ ξ(X) ∧ η to a SAT solver produces a model:

m1 =
{
〈〈d′

1〉〉 = 1, 〈〈d1〉〉 = 1, 〈〈d2〉〉 = 1, . . . , 〈〈d7〉〉 = 1, 〈〈d8〉〉 = 1
}

which is fully detailed in Tab. 1. The assignment 〈〈d′
1〉〉 = 1 does not necessarily

represent the maximum value of 〈〈d′
1〉〉 for the partial assignment 〈〈d1〉〉 = 1, . . . ,

〈〈d8〉〉 = 1. Thus let ζ1 denote a formula that holds iff 〈〈d1〉〉 = 1, . . . , 〈〈d8〉〉 = 1

11



all hold. Then range refinement can be applied to find the maximal value of 〈〈d′
1〉〉

subject to κ ∧ ξ(X) ∧ η ∧ ζ. This gives 〈〈d′
1〉〉 = 2 and a model:

m′1 =
{
〈〈d′

1〉〉 = 2, 〈〈d1〉〉 = 1, . . . , 〈〈d8〉〉 = 1
}

An affine summary of all such maximal models can be found by interleaving
range refinement with affine join. Thus suppose the matrix M1 is constructed
from m′1 by using the variable ordering 〈d′1, d1, . . . , d8〉 on columns:

M1 =



1 0 0 0 0 0 0 0 0 2
0 1 0 0 0 0 0 0 0 1
0 0 1 0 0 0 0 0 0 1
0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 1
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 1
0 0 0 0 0 0 0 0 1 1


The method proceeds in an analogous fashion to before by constructing a formula
µ that holds iff 〈〈d8〉〉 6= 1 holds. Solving the formula κ ∧ ξ(X) ∧ η ∧ µ gives the
model m2 detailed in Tab. 1. The model m2, itself, defines a formula ζ2 that is
equi-satisfiable with the conjunction of 〈〈d1〉〉 = 3, . . . , 〈〈d8〉〉 = 0. Maximising
〈〈d′1〉〉 subject to κ ∧ ξ(X) ∧ η ∧ ζ2 gives 〈〈d′1〉〉 = 10 which defines the model

m′2 =
{
〈〈d′

1〉〉 = 10, 〈〈d1〉〉 = 3, . . . , 〈〈d8〉〉 = 0
}

and M2, which in turn yields the join M1 tM2 as follows:

M1 tM2 =


1 0 0 0 0 −2 0 0 0 0
0 1 −1 0 0 0 0 0 0 0
0 0 0 1 −2 0 0 0 0 0
0 0 0 0 0 0 1 2 0 2
0 0 0 0 0 0 0 1 1 1


Repeating this process two more times then gives:

m′3 =
{
〈〈d′

1〉〉 = 26, 〈〈d1〉〉 = 8, . . . , 〈〈d8〉〉 = 0
}

m′4 =
{
〈〈d′

1〉〉 = 6, 〈〈d1〉〉 = 0, . . . , 〈〈d8〉〉 = 3
}

M1 tM2 tM3 =

[
1 0 0 0 0 −2 0 0 0 0
0 1 −1 1 −1 0 0 0 0 0

]
M1 tM2 tM3 tM4 =

[
1 0 0 0 0 −2 0 0 0 0

]
The system M1tM2tM3tM4 then expresses the relationship 〈〈d′1〉〉 = 2 · 〈〈d5〉〉.

To verify that 〈〈d′1〉〉 = 2 · 〈〈d5〉〉 is a fixed point, unlike before, it not sufficient
to impose the disequality 〈〈d′1〉〉 6= 2 · 〈〈d5〉〉 and check for unsatisfiability. This
is because 〈〈d′1〉〉 is defined through maximisation. Instead the check amounts

12



to testing whether κ ∧ ξ(X) ∧ η is unsatisfiable when combined with a formula
encoding the strict inequality 〈〈d′1〉〉 > 2 · 〈〈d5〉〉. Since the combined system is
unsatisfiable, we conclude that the update for this mode-combination includes
d′1 = 2 · d5. The complete affine update consists of:

d′1 = 2 · d5 d′2 = d2 d′3 = 2 · d6 d′4 = d4
d′5 = 2 · d5 + d2 d′6 = 2 · d6 + d4 d′7 = 2 · d6 + d2 d′8 = 2 · d5 + d4

Observe that these linear symbolic update operations are optimal.

Reflections on octagonal transfer functions Interestingly, Miné [22, Fig. 27]
also discusses the relative precision of transfer functions, though where the base
semantics is polyhedral rather than Boolean. Using his classification, the transfer
functions derived using the synthesis techniques presented in Sect. 3.3 and 3.4
might be described as medium and exact.

3.5 Inferring bounds for octagons

For a final example, consider the following code block:

1 : AND R0, 15; 2 : AND R1, 15; 3 : XOR R0, R1; 4 : ADD R0, R1;

The operations AND and XOR are uni-modal; ADD is multi-modal but it only
operates in exact mode for this block. For this single mode no affine relationship
exists between the symbolic constants di that characterise the input octagon and
those d′i that characterise the output octagon.

However, even in such cases, it can be still possible to find a d′1 such that
〈〈r0′〉〉 ≤ d′1 by applying range refinement. This gives d′1 = 30. Repeating this
tactic for remaining the symbolic output constants yields:

d′1 = 30 d′2 = 15 d′3 = 0 d′4 = 0
d′5 = 45 d′6 = 0 d′7 = 0 d′8 = 15

4 Evaluating Transfer Functions

Thus far, we have described how to derive transfer functions for intervals and
octagons where the functions are systems of guards paired with affine updates,
without reference to how they are evaluated. In our previous work [6], the
application of a transfer function amounted to solving a series of integer linear
programs (ILPs). To illustrate, suppose a transfer function consists of a single
guard g and update u pair and let c denote a system of octagonal constraints
on the input variables. A single output inequality in the output system, c′, such
as r0′ + r1′ ≤ d′5, can be derived by maximising r0′ + r1′ subject to the linear
system c ∧ g ∧ u. To construct c′ in its entirety requires the solution of O(n2)
ILPs where n is the number of registers (or variables) in the block. Although
steady progress has been made on deriving safe bounds for integer programs [26],
a more attractive solution computationally would avoid ILPs altogether.

13



4.1 A single guard and update pair

Affine updates, as derived in Sect. 3.4, relate symbolic constants on the inequalities
in the input octagon to those of the output octagon. These updates confer a
different, simpler, evaluation model. To compute r0′+r1′ ≤ d′5 in c′ it is sufficient
to compute c u g [22] which is the octagon that describes the conjoined system
c ∧ g. This can be computed in quadratic-time when g is a single inequality and
in cubic-time otherwise [22]. The meet c u g then defines values for the symbolic
constants di, though these values may include −∞ and ∞. The value of d′5 is
defined by its affine update, that is, as a weighted sum of the di values. If there
is no affine update for d′5, then its value defaults to ∞. If bounds have been
inferred for output octagons (Sect 3.5), then the d′i can possibly be refined with
a tighter bound. This evaluation mechanism thus replaces ILP with arithmetic
that is both conceptually simple and computationally efficient. This is significant
since transfer functions are themselves computed many times during fixpoint
evaluation.

4.2 A system of guard and update pairs

The above evaluation procedure needs to be applied for each guard g and update
u pair for which cu g is satisfiable. Thus several output octagons may be derived
for a single block. We do not prescribe how these octagons should be combined,
for example, a disjunctive representation is one possibility [13]. However, the
simplest tactic is undoubtedly to apply the merge operation for octagons [22]
(though this entails closing the output octagons).

5 Experiments

We have implemented the techniques described in this paper in Java using the
Sat4J solver [21], so as to integrate with our analysis framework for machine
code [30], called [mc]square, which is also coded in Java. All experiments were
performed on a MacBook Pro equipped with a 2.6 GHz dual-core processor
and 4 GB of RAM, but only a single core was used in our experiments.

To evaluate transfer function synthesis without quantifier elimination, Tab. 2
compares the results for intervals for different blocks of assembly code to those
obtained using the technique described in [6]. Column #instr contains the number
of instructions, whereas column #bits gives the bit-width. (The 8-bit and 32-bit
versions of the AVR instruction sets are analogous.) Then, #affine presents
the number of affine relations for each block. The columns runtime contain the
runtime and the number of SAT instances. The overall runtime of the elimination-
based algorithm [6] is given in column old (∞ is used for timeout, which is set to
30s). Transfer function synthesis for blocks of up to 10 instruction is evaluated,
which is a typical size for microcontroller code. For these size blocks, we have
never observed more than 10 feasible mode combinations.

14



Table 2. Experimental results for synthesis of transfer functions

block #instr #affine #bits
runtime

guards / #SAT affine / #SAT overall old

inc 1 2
8 0.2s / 40 0.1s / 5 0.3s 0.2s
32 0.5s / 136 0.2s / 5 1.0s 23.0s

inc+shift 2 3
8 0.3s / 60 0.1s / 8 0.4s 0.3s
32 0.8s / 216 0.2s / 8 1.0s ∞

swap 3 1
8 — 0.1s / 3 0.1s 0.1s
32 — 0.1s / 3 0.1s 0.2s

inc+flip 4 2
8 0.2s / 40 0.2s / 5 0.4s 0.5s
32 0.9s / 216 0.3s / 5 1.2s ∞

abs 5 3
8 2.5s / 216 0.3s / 8 2.8s 0.8s
32 6.5s / 792 0.3s / 8 6.8s ∞

inc+abs 6 3
8 2.6s / 216 0.3s / 8 2.9s 1.4s
32 6.7s / 792 0.3s / 8 7.0s ∞

sum+isign 7 5
8 4.1s / 360 0.2s / 18 4.3s 4.5s
32 10.7s / 1320 0.4s / 18 11.1s ∞

exchange+abs 10 3
8 2.8s / 216 0.3s / 8 3.1s 9.5s
32 7.2s / 792 0.3s / 8 7.5s ∞

Comparison Using quantifier elimination, all instances could be solved in a
reasonable amount of time for 8-bit instructions. However, only the small instances
could be solved for 32 bits (and only then because the Boolean encodings for
the instructions were minimised prior to the synthesis of the transfer functions).
It is also important to appreciate that none of the timeouts was caused by the
SAT solver; it was resolution that failed to produce results in reasonable time.
By way of comparison, synthesising guards for different overflow modes requires
most runtime in our new approach, caused by the fact that the number of SAT
instances to be solved grows linearly with the number of bits and quadratically
with the number of variables (the number of octagonal inequalities is quadratic
in the number of variables). Computing the affine updates consumes only a
fraction of the overall time. In terms of precision, the results coincide with those
previously generated [6].

The block for swap is interesting since it consists of three consecutive exclusive-
or instructions, for which there is no coupling between different bits of the same
register. The block is also unusual in that it is uni-modal with vacuous guards.
These properties make it ideal for resolution. Even in this situation, the new
technique scales better. In fact, the Boolean formulae that we present to the
solver are almost trivial by modern standards, the main overhead coming from
repeated SAT solving rather than solving a single large instance. Sat4J does
reuse clauses learnt in an earlier SAT instances, though it does not permit
clauses to be incrementally added and rescinded which is useful when solving
maximisation problems [6]. Thus the timings given above are very conservative;
indeed Sat4J was chosen to maintain the portability of [mc]square rather than
for raw performance. Nevertheless, these timings very favourably compare with

15



those required to compute transfer functions for intervals using BDDs [28], where
in excess of 24 hours is required for single 8-bit instructions.

Deriving octagonal transfer functions The process of deriving octagonal
transfer functions by lifting (Sect. 3.3) requires an imperceivable overhead com-
pared to computing affine relations themselves, indeed it is merely syntactic
rewriting. The runtimes required for inferring affine inequalities by alternating
range refinement and affine join (Sect. 3.4), however, is typically 3 or 4 times
slower than those of computing the guards; the number of symbolic constants on
the output inequalities corresponds exactly to the number of input guards. (We
refrain from giving exact times since this component has not been tuned.)

Further optimisations Since transfer functions are program dependent, one
could first use a simple form of range analysis [5] to over-approximate the ranges
a register can assume. These ranges can be encoded in the formulae, thereby
pruning out some mode-combinations. For example, it is rarely the case that the
absolute value function is actually applied to the smallest representable integer.

6 Related Work

Although the problem of constructing transfer functions has been recognised for
over twenty years, for example, by Cousot and Halbwachs [12] for the polyhedral
domain and by Granger [14] for linear congruences, automatic synthesis has
only recently become a practical proposition due to emergence of robust decision
procedures [19, 29] and quantifier elimination techniques [20, 23, 24].

Transfer functions [29] can always be found for domains that satisfy the
finite ascending chain condition, provided one is prepared to pay the cost of
calling a decision procedure repeatedly on each application of a transformer. This
motivates applying a decision procedure in order to compute optimal transfer
functions offline, prior to the actual analysis [6, 19].

Our previous work [6] shows how bit-blasting and quantifier elimination can
be applied to synthesise transformers for bit-vector programs. This work was
inspired by that of Monniaux [23, 24] on synthesising transfer functions for piece-
wise linear programs. Although his approach extends beyond octagons [32], it is
unclear how to express some instructions (such as exclusive-or) in terms of linear
constraints. Universal quantification, as used in both approaches, also appears in
work on inferring linear template constraints by Gulwani et al. [15]. There, the
authors apply Farkas’ lemma in order to transform universal quantification into
existential quantification, albeit at the cost of completeness since Farkas’ lemma
prevents integral reasoning. However, crucially, neither Monniaux nor Gulwani
et al. provide a way to model integer overflow. By way of contrast, our approach
explains how to systematically handle wrap-around arithmetic in the transfer
function itself whilst sidestepping quantifier elimination.

Transfer functions have been automatically synthesised for intervals using
BDDs by applying interval subdivision [28]. If g : [0, 28 − 1] → [0, 28 − 1] is

16



a unary operation on an unsigned byte, then its transformer f : D → D on
D = {∅} ∪ {[`, u] | 0 ≤ ` ≤ u < 28} can be defined recursively. If ` = u then
f([`, u]) = g(`) whereas if ` < u then f([`, u]) = f([`,m− 1]) t f([m,u]) where
m = bu/2nc2n and n = blog2(u − ` + 1)c. Binary operations can likewise be
decomposed. The 8-bit inputs, ` and u, can be represented as 8-bit vectors, as
can the 8-bit outputs, so as to represent f with a BDD. This permits caching to
be applied when f is computed, which reduces the time needed to compute a
best transformer to approximately one day for each 8-bit operation.

The classical approach to handling overflow is to verify that they do not occur
using unbounded domains as implemented in the Astree tool [11]. However,
for the domain of polyhedra, it is also possible to revise the concretisation map
to reflect the effect of truncation [31]. Another choice is to deploy congruence
relations [14] where the modulus is a power of two [19, 25]. Finally, bit-blasting
has been combined with range inference elsewhere [5, 8], though neither of these
papers address relational abstraction nor transfer function synthesis.

7 Concluding Discussion

Synopsis This paper revisits the problem of synthesising transfer functions
for programs whose semantics is defined over finite bit-vectors. The irony is
that although Boolean formula initially appear attractive for synthesis because
of the simplicity of universal projection [6], their real strength is the fact that
they are discrete. This permits octagonal inequalities to be inferred by repeated
satisfiability testing, avoiding the need for quantifier elimination, and in particular
the complexity of resolution. The force of this observation is that it extends
transfer function synthesis to architectures whose word size exceeds 8 bits,
strengthening the case for low-level code verification [4, 30].

Future work The problem of synthesising transfer functions is not dissimilar
to that of inferring ranking functions for bit-vector programs [9]. The existence
of a ranking function on a path π with a transition relation rπ(x,x′) amounts
to solving the formula ∃c : ∀x : ∀x′ : rπ(x,x′) → (p(c,x) < p(c,x′)) where
p(c,x) is a polynomial over the bit-vector x and c is a bit-vector of coefficients.
However, if intermediate variables y are needed to express rπ(x,x′), p(c,x),
p(c,x′) or <, then the formula actually takes the form ∃c : ∀x : ∀x′ : ∃y : ν
where ∃y : ν ≡ rπ(x,x′)→ (p(c,x) < p(c,x′)). This formula is similar to those
solved in [6] by elimination which begs the question of whether this problem, like
that of transfer function synthesis, can be recast to avoid elimination altogether.

We will also investigate whether transfer functions can be found, not only for
sequences of instructions, but also for entire loops [17, 23]. Existing approaches
for the specification of (least inductive) loop invariants rely on existential quan-
tification, and the natural question is whether the techniques proposed in this
paper can annul this complexity. It is also interesting to note that octagons
derived using our approach are tightly closed [22]. Intuitively, this means that
all hyperplanes defined through inequalities actually touch the enclosed volume.

17



However, the octagons may contain redundant inequalities, and therefore it
will be interesting to see if simplification is worthwhile [2] and, if so, whether
non-redundant octagons can be directly derived using SAT.

Acknowledgements The first author was supported, in part, by the DFG research
training group 1298 Algorithmic Synthesis of Reactive and Discrete-Continuous
Systems and the by the DFG Cluster of Excellence on Ultra-high Speed Infor-
mation and Communication, German Research Foundation grant DFG EXC 89.
The second author was funded, in part, by a Royal Society travel grant, refer-
ence TG092357, and a Royal Society Industrial Fellowship, reference IF081178.
We thank David Monniaux and Stefan Kowalewski for interesting technical
discussions, as well as moral support, in this line of scientific enquiry.

References

1. Atmel Products. AVR32 Architecture Manual, 2007. http://www.atmel.com/.
2. R. Bagnara, P. M. Hill, and E. Zaffanella. Weakly-relational shapes for numeric

abstractions: improved algorithms and proofs of correctness. Formal Methods in
System Design, 35(3):279–323, 2009.

3. C. Baier and J.-P. Katoen. Principles of Model Checking. The MIT Press, 2008.
4. G. Balakrishnan and T. Reps. WYSINWYX: What You See Is Not What You

eXecute. ACM Trans. Program. Lang. Syst., 32(6), 2010.
5. E. Barrett and A. King. Range and Set Abstraction Using SAT. Electronic Notes

in Theoretical Computer Science, 267(1):17–27, 2010.
6. J. Brauer and A. King. Automatic Abstraction for Intervals using Boolean Formulae.

In SAS, volume 6337 of LNCS, pages 167–183. Springer, 2010.
7. E. Clarke, D. Kroening, and F. Lerda. A tool for checking ANSI-C programs. In

TACAS, volume 2988 of LNCS, pages 168–176. Springer, 2004.
8. M. Codish, V. Lagoon, and P. J. Stuckey. Logic programming with satisfiability.

Theory and Practice of Logic Programming, 8(1):121–128, 2008.
9. B. Cook, D. Kroening, P. Rümmer, and C. Wintersteiger. Ranking Function

Synthesis for Bit-Vector Relations. In TACAS, volume 6015 of LNCS, pages
236–250. Springer, 2010.

10. P. Cousot and R. Cousot. Abstract Interpretation: A Unified Lattice model for
Static Analysis of Programs by Construction or Approximation of Fixpoints. In
POPL, pages 238–252. ACM Press, 1977.

11. P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Mine, D. Monniaux, and X. Rival.
The Astrée analyser. In ESOP, volume 3444 of LNCS, pages 21–30. Springer, 2005.

12. P. Cousot and N. Halbwachs. Automatic Discovery of Linear Restraints Among
Variables of a Program. In POPL, pages 84–97. ACM Press, 1978.

13. R. Giacobazzi and F. Ranzato. Optimal domains for disjunctive abstract interpre-
tation. Sci. Comput. Program., 32(1–3):177–210, 1998.

14. P. Granger. Static Analysis of Arithmetical Congruences. International Journal of
Computer Mathematics, 30(13):165–190, 1989.

15. S. Gulwani, S. Srivastava, and R. Venkatesan. Program Analysis as Constraint
Solving. In PLDI, pages 281–292. ACM Press, 2008.

16. J. B. Kam and J. D. Ullman. Monotone Data Flow Analysis Frameworks. Acta
Informatica, 7:305–317, 1997.

18



17. D. Kapur. Automatically Generating Loop Invariants Using Quantifier Elimination.
In Deduction and Applications, volume 05431. IBFI, 2005.

18. M. Karr. Affine Relationships among Variables of a Program. Acta Informatica,
6:133–151, 1976.

19. A. King and H. Søndergaard. Automatic Abstraction for Congruences. In VMCAI,
volume 5944 of LNCS, pages 197–213. Springer, 2010.

20. D. Kroening and O. Strichman. Decision Procedures. Springer, 2008.
21. D. Le Berre. SAT4J: Bringing the power of SAT technology to the Java platform,

2010. http://www.sat4j.org/.
22. A. Miné. The Octagon Abstract Domain. Higher-Order and Symbolic Computation,

19(1):31–100, 2006.
23. D. Monniaux. Automatic Modular Abstractions for Linear Constraints. In POPL,

pages 140–151. ACM Press, 2009.
24. D. Monniaux. Quantifier Elimination by Lazy Model Enumeration. In CAV, volume

6174 of LNCS, pages 585–599. Springer, 2010.
25. M. Müller-Olm and H. Seidl. Analysis of Modular Arithmetic. ACM Trans. Program.

Lang. Syst., 29(5), August 2007.
26. A. Neumaier and O. Shcherbina. Safe Bounds in Linear and Mixed-Integer Linear

Programming. Math. Program., 99(2):283–296, 2004.
27. D. A. Plaisted and S. Greenbaum. A Structure-Preserving Clause Form Translation.

Journal of Symbolic Computation, 2(3):293–304, September 1986.
28. J. Regehr and A. Reid. HOIST: A System for Automatically Deriving Static

Analyzers for Embedded Systems. ACM SIGOPS Operating Systems Review,
38(5):133–143, 2004.

29. T. Reps, M. Sagiv, and G. Yorsh. Symbolic Implementation of the Best Transformer.
In VMCAI, volume 2937 of LNCS, pages 252–266. Springer, 2004.

30. B. Schlich. Model Checking of Software for Microcontrollers. ACM Trans. Embed.
Comput. Syst., 9(4):1–27, 2010.

31. A. Simon and A. King. Taming the Wrapping of Integer Arithmetic. In SAS,
volume 4634 of LNCS, pages 121–136. Springer, 2007.

32. A. Simon, A. King, and J. M. Howe. The Two Variable Per Inequality Abstract
Domain. Higher-Order and Symbolic Computation. To appear.

19


