
RTT-STO Product Whitepaper

For more information
visit

www.verified.de/
products/rtt-sto

Verified Systems
International GmbH
Am Fallturm 1
28359 Bremen
Germany

RTT-STO:
Source-To-Object Analyzer

Effective source-to-object code (STO)
analysis for safety-critical avionics software

RTT-STO is a software analysis tool-suite that automatically
performs static program analyses of C code and assembly required
to receive certification credit for source-to-object code validation in
the context of safety-critical avionics software.

Source-Code-To-Object-Code Traceability
Analysis for Avionics Software

For safety-critical systems software verification, many activities are
performed on source code level. As a consequence, the validity of
these verification results depends on the consistency between
source code and object code. In some application domains, this
issue is addressed by utilizing validated compilers. This approach,
however, is not accepted in the avionics domain. The current
standard for software development for airborne systems, RTCA DO-
178C, states clearly that any automation tool applied in the
development or verification process can only be qualified for the
specific target system under consideration [1, Chap. B-1]. For
compilers, the standard requires an approach where the object
code produced is verified by means of tests and analyses, so that a
qualification of compilers is not necessary; [2, Chap. 4.4.2] states
that:

“Upon successful completion of verification of the software
product, the compiler is considered acceptable for that product.”

To support this approach, the standard requires to perform various
verification activities which show that the executable object code
complies with the high-level and low-level requirements, that it is
robust with respect to these requirements, and that it is compatible
with the target computer [2, Chap. 6.4]. In order to show that the
requirements-driven tests performed during the verification
activities suffice, a structural coverage analysis has to be
performed [2, Chap. 6.4.4.2]. Structural coverage analysis detects
whether some code structures or interfaces have not been
exercised during testing. This code has to be removed if it does not
contribute to the realization of the requirements, or it may lead to
refined tests or analyses, if the requirements-driven tests
performed so far had been too coarse-grained to exercise all case
distinctions reflected by the uncovered code.

Doc.-ID Verified-WHITEPAPER-001-2016, issue 1.0, 2016-05-19

http://www.verified.de/
http://www.verified.de/
http://www.verified.de/

RTT-STO Product Whitepaper

For software of the highest criticality – this is Design Assurance
Level A (DAL-A) – additional analyses have to be performed on
object code level; this activity is called Source-Code-
to-Object-Code (STO) Traceability Analysis. Its main objective is to
verify that any additional object code which has been generated by
the compiler but is not directly traceable to the source code does
not introduce any errors and has been adequately covered by tests
and/or analyses [2, Chap. 6.4.4.2 b.].

STO analysis certainly is a non-trivial task, because in principle,
compilers may add, delete, or morph code during compilation, and
the need for STO analysis imposes a significant workload on
developers of airborne software systems.

STO Traceability Analysis using RTT-STO

The RTT-STO tool-suite automatically performs four different
analysis passes in order to show that compilation has not
introduced any problems:

• Branching analysis compares the control flow implemented
in source code and object code and detects deviations
between these two program representation. It turns out that
compilers frequently add branches on object code level,
which implies that additional tests have to be performed in
order to achieve 100% assembly branch coverage.

• In some situations, compilers replace seemingly simple
operations in source code by calls to built-in functions. For
example, a 64-bit integer division on a 32-bit PowerPC
platform has to be emulated by a sequence of instructions.
Compilers may then call a built-in function, rather than
inserting the sequence of instructions. Hidden library
function analysis automatically detects such situations,
which warrant additional verification in order to receive
certification credit.

• The memory allocation analysis checks whether the
object code contains data allocations (on the heap, on the
stack, or using registers) where the size of the allocated
memory region does not conform to the size expected from
the type declarations in the source code.

• A quite subtle observation is that an erroneous compiler may
have inserted undesired store operations targeting some
memory addresses. Since requirements-based tests typically
only examine the effects of desired store operations in the
expected results — but not all possible alterations of the
memory state — such malicious behavior is likely to be
missed during testing. The store analysis provided by RTT-
STO analyzes all memory accesses implemented in the
object code and traces these accesses back to source code,
which guarantees the absence of the aforementioned
malicious store operations.

RTT-STO Product Whitepaper

Together, these analyses cover all STO analysis requirements
defined by the RTCA DO-178C standard, and as interpreted in the
DO-178C guide [3]. It is important to stress that the analysis
method provided by RTT-STO is associated with a verification
workflow that has been approved by certification authorities for the
verification of DAL-A software. Of course, RTT-STO can be qualified
for such projects.

Verification Project with RTT-STO

All in all, a verification project conducted using RTT-STO consists of
five tasks overall. First, the code base is imported into the tool,
which is referred to as the “preprocessing phase”. During this
preprocessing phase, the tool analyzes the code base and extracts
data that is used among all following analysis passes. Then, the
four analysis passes, which have been described before, are
performed one after another. This section sketches the workflow of
a typical STO verification project using RTT-STO.

After program startup, a project wizard guides tool-users through
the preprocessing phase. The setup is required so as to configure
the tool with respect to the build process. For example, the
directories that contain the source code and object code have to be
configured, the compiler used has to be chosen from a list of
supported compilers, and the build flags used during the project
have to be defined. The Illustration 1 shows the preprocessing
configuration in RTT-STO. Once finished, the same preprocessing
configuration is reused for all following analysis passes.

Illustration 1: Configuration dialog of RTT-STO

RTT-STO Product Whitepaper

The configuration of each following analysis is extremely simple, as
the configuration just consists of selecting the files that shall be
analyzed. The analysis are then performed automatically, without
any manual intervention required. Illustration 2 shows the results
of the hidden library function analysis. The tool explicitly highlights
which statement in C-code has induced which in object code, and
both representations can be examined directly in RTT-STO. In the
example, RTT-STO has detected that the compiler has mimicked a
64-bit unsigned integer division via a call to a built-in function
called __gh_udiv64. The compiler has thereby introduced additional
control flow.

Likewise, Illustration 3 shows the tool outputs for store analysis
(also referred to as memory matching analysis). For each memory
access, RTT-STO establishes traceability between the store
operation in the object code (as shown on the left-hand side) and
the source code fragment that induces the store operation (as
shown on the right-hand side). The results table indicates these
code fragments as well as the variable symbol that is accessed. For
typical projects, RTT-STO automatically proves correctness for more
than 90% of all memory accesses.

Illustration 2: Verification of hidden library function calls in RTT_STO

RTT-STO Product Whitepaper

Conclusion

RTT-STO outputs a results spreadsheet for each analysis pass with
detailed verification results. The analyses are designed as
conservative program analyses, which means that they output a
verdict “FAIL” whenever the tool cannot guarantee that the
analyzed item is correct. However, RTT-STO outputs detailed
information about the parts of the code base that have caused
verdict “FAIL”, so that the outputs guide the manual verification
efforts. Instead of having to scan for those code fragments that
need to be verified, verification engineers are provided with a
detailed list of code fragments that need to be examined. This
approach significantly reduces the human workload, and thus the
cost, for verification.

Traditional approaches to STO traceability analysis manually
examine a small fragment of the overall code base, whereas RTT-
STO covers the entire source code and object code. The verification
data that is presented to the certification authorities is thus much
stronger because RTT-STO generates complete verification
evidence.

RTT-STO ships with a custom graphical user interface that guides
tool-users through the workflows and runs on both Windows 7 and
Linux (CentOS 7 64-bit).

Illustration 3: Verification of stores in RTT-STO

RTT-STO Product Whitepaper

Contact

Verified Systems company has more than 15 years of experience
with certification-related services for the avionics domain and
offers a wide variety of verification and testing services beyond
STO traceability analysis. Please contact us via info@verified.de.

References

[1] RTCA SC-205/EUROCAE WG-71: Software Considerations in
Airborne Systems and Equipment Certification. No. RTCA DO-
178C, RTCA, Inc.

[2] RTCA SC-205/EUROCAE WG-71: Software Tool Qualification
Considerations. No. RTCA DO-330, RTCA, Inc.

[3] Rierson, Leanne: Developing Safety-Critical Software. CRC
Press (2013)

mailto:info@verified.de

