
A. Petrenko, H. Schlingloff (Eds.): Eighth Workshop on
Model-Based Testing (MBT 2013)
EPTCS 111, 2013, pp. 3–28, doi:10.4204/EPTCS.111.1

c© Jan Peleska
This work is licensed under the
Creative Commons Attribution License.

Industrial-Strength Model-Based Testing - State of

the Art and Current Challenges∗

Jan Peleska
University of Bremen, Department of Mathematics and Computer Science, Bremen, Germany

Verified Systems International GmbH, Bremen, Germany

jp@informatik.uni-bremen.de

As of today, model-based testing (MBT) is considered as leading-edge technology in industry.
We sketch the different MBT variants that – according to our experience – are currently
applied in practice, with special emphasis on the avionic, railway and automotive domains.
The key factors for successful industrial-scale application of MBT are described, both from
a scientific and a managerial point of view. With respect to the former view, we describe the
techniques for automated test case, test data and test procedure generation for concurrent
reactive real-time systems which are considered as the most important enablers for MBT in
practice. With respect to the latter view, our experience with introducing MBT approaches
in testing teams are sketched. Finally, the most challenging open scientific problems whose
solutions are bound to improve the acceptance and effectiveness of MBT in industry are
discussed.

1 Introduction

1.1 Model-Based Testing

Following the definition currently given in Wikipedia1

“Model-based testing is application of Model based design for designing and optionally
also executing artifacts to perform software testing. Models can be used to represent
the desired behavior of an System Under Test (SUT), or to represent testing strategies
and a test environment.”

In this definition only software testing is referenced, but it applies to hardware/software
integration and system testing just as well. Observe that this definition does not require that
certain aspects of testing – such as test case identification or test procedure creation – should be
performed in an automated way: the MBT approach can also be applied manually, just as design
support for testing environments, test cases and so on. This rather unrestricted view on MBT is
consistent with the one expressed in [2], and it is reflected by today’s MBT tools ranging from
graphical test case description aides to highly automated test case, test data and test procedure
generators. Our concept of models also comprises computer programs, typically represented by
per-function/method control flow graphs annotated by statements and conditional expressions.

Automated MBT has received much attention in recent years, both in academia and in in-
dustry. This interest has been stimulated by the success of model-driven development in general,
by the improved understanding of testing and formal verification as complementary activities,

∗The author’s research is funded by the EU FP7 COMPASS project under grant agreement no.287829
1http://en.wikipedia.org/wiki/Model-based_testing, (date: 2013-0211).

http://dx.doi.org/10.4204/EPTCS.111.1
http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

4 Industrial-Strength Model-Based Testing

and by the availability of efficient tool support. Indeed, when compared to conventional test-
ing approaches, MBT has proven to increase both quality and efficiency of test campaigns; we
name [21] as one example where quantitative evaluation results have been given.

In this paper the term model-based testing is used in the following, most comprehensive,
sense: the behaviour of the system under test (SUT) is specified by a model elaborated in the
same style as a model serving for development purposes. Optionally, the SUT model can be
paired with an environment model restricting the possible interactions of the environment with
the SUT. A symbolic test case generator analyses the model and specifies symbolic test cases as
logical formulas identifying model computations suitable for a certain test purpose. Constrained
by the transition relations of SUT and environment model, a solver computes concrete model
computations which are witnesses of the symbolic test cases. The inputs to the SUT obtained
from these computations are used in the test execution to stimulate the SUT. The SUT behaviour
observed during the test execution is compared against the expected SUT behaviour specified in
the original model. Both stimulation sequences and test oracles, i. e., checkers of SUT behaviour,
are automatically transformed into test procedures executing the concrete test cases in a model-
in-the-loop, software-in-the-loop, or hardware-in-the-loop configuration.

According to the MBT paradigm described here, the focus of test engineers is shifted from
test data elaboration and test procedure programming to modelling. The effort invested into
specifying the SUT model results in a return of investment, because test procedures are generated
automatically, and debugging deviations of observed against expected behaviour is considerably
facilitated because the observed test executions can be “replayed” against the model. Moreover,
V&V processes and certification are facilitated because test cases can be automatically traced
against the model which in turn reflects the complete set of system requirements.

1.2 Objectives of this Paper

The objective of this paper is to describe the capabilities of MBT tools which – according
to our experience – are fit for application in today’s industrial scale projects and which are
essential for successful MBT application in practice. The MBT application field considered here
is distributed embedded real-time systems in the avionic, automotive and railway domains. The
description refers to our tool RT-Tester2 for illustrating several aspects of MBT in practice,
and the underlying methods that helped to meet the test-related requirements from real-world
V&V campaigns. The presentation is structured according to the MBT researchers’ and tool
builders’ perspective: we describe the ingredients that, according to our experience, should be
present in industrial-strength test automation tools, in order to cope with test models of the sizes
typically encountered when testing embedded real-time systems in the automotive, avionic or
railway domains. We hope that these references to an existing tool may serve as “benchmarking
information” which may motivate other researchers to describe alternative methods and their
virtues with respect to practical testing campaigns.

2The tool has been developed by Verified Systems International in cooperation with the author’s team at the
University of Bremen. It is available free of charge for academic research, but commercial licenses have to be
obtained for industrial application. Some components (e.g., the SMT solver) will also become available as open
source.

Jan Peleska 5

1.3 Outline

In Section 2 a tool introduction is given. In Section 3, MBT methods and challenges related
to modelling are discussed. Section 4 introduces a formal view on requirements, test cases and
their traceability in relation to the test model. It also discusses various test strategies and their
justification. A case study illustrating various points of our discussion of MBT is described in
Appendix A. Section 5 presents the conclusion. We give references to alternative or competing
methods and tools along the way, as suitable for the presentation.

2 A Reference MBT Tool

RT-Tester supports all test levels from unit testing to system integration testing and provides
different functions for manual test procedure development, automated test case, test data and
test procedure generation, as well as management functions for large test campaigns. The typ-
ical application scope covers (potentially safety-critical) embedded real-time systems involving
concurrency, time constraints, discrete control decisions as well as integer and floating point
data and calculations. While the tool has been used in industry for about 15 years and has
been qualified for avionic, automotive and railway control systems under test according to the
standards [33, 20, 38], the results presented here refer to more recent functionality that has been
validated during the last years in various projects from the transportation domains and are now
made available to the public.

The starting point for MBT is a concrete test model describing the expected behaviour of
the system under test (SUT) and, optionally, the behaviour of the operational environment to be
simulated in test executions by the testing environment (TE) (see Fig. 1). Models developed in a
specific formalism are transformed into some textual representation supported by the modelling
tool (usually XMI format). A model parser front-end reads the model text and creates an
internal model representation (IMR) of the abstract syntax.

A transition relation generator creates the initial state and the transition relation of the model
as an expression in propositional logic, referring to pre-and post-states. Model transformers
create additional reduced, abstracted or equivalent model representations which are useful to
speed up the test case and test data generation process.

A test case generator creates propositional formulas representing test cases built according
to a given strategy. A satisfiability modulo theory (SMT) solver calculates solutions of the test
case constraints in compliance with the transition relation. This results in concrete compu-
tation fragments yielding the time stamps and input vectors to be used in the test procedure
implementing the test case (and possibly other test cases as well). An interpreter simulating the
model in compliance with the transition relation is used to investigate concrete model executions
continuing the computation fragments calculated by the SMT solver or, alternatively, creating
new computations based on environment simulation and random data selection. An abstract
interpreter supports the SMT solver in finding solutions faster by calculating the minimum num-
ber of transition steps required to reach the goal, and by restricting the ranges of inputs and
other model variables for each state possibly leading to a solution. Finally, the test procedure
generator creates executable test procedures as required by the test execution environment by
mapping the computations derived before into time-controlled commands sending input data to
the SUT and by creating test oracles from the SUT model portion checking SUT reactions on
the fly, in dependency of the stimuli received before from the TE.

6 Industrial-Strength Model-Based Testing

Figure 1: Components of the RT-Tester test case/test data generator.

3 Modelling Aspects

3.1 Modelling Formalisms

It is our expectation that the ongoing discussions about suitable modelling formalisms for re-
active systems – from UML via process algebras and synchronous languages to domain-specific
languages – will not converge to a single preferred formalism in the near future. As a con-
sequence it is important to separate the test case and test data generation algorithms from
concrete modelling formalisms.

RT-Tester supports subsets of UML [24] and SysML [23] for creating test models: SUT struc-
ture is expressed by composite structure or block diagrams, and behaviour is specified by means
of state machines and operations (a small SysML-based case study is presented Appendix A).
The parser front end reads model exports from different tools in XMI format. Another parser
reads Matlab/Simulink models. For software testing, a further front end parses transition graphs
of C functions.

Jan Peleska 7

The first versions of RT-Tester supported CSP [35] as modelling language, but the process-
algebraic presentation style was not accepted well by practitioners. Support for an alternative
textual formalism is currently elaborated by creating a front-end for CML [43], the COMPASS
modelling language specialised on systems of systems (SoS) design, verification and validation.
In CML, the problems preventing a wider acceptance of CSP for test modelling have been
removed.

Some formalisms are domain-specific and supported on customers’ request: in [21] automated
MBT against a timed variant of Moore Automata is described, which is used for modelling control
logic of level crossing systems.

3.2 A Sample Model

In Appendix A a case study is presented which will be used in this paper to illustrate modelling
techniques, test case generation and requirements tracing. The case study models the turn
indication and emergency flashing functions as present in modern vehicles. While this study
is just a small simplified example, a full test model of the turn indication function as realised
in Daimler Mercedes cars has been published in [26] and is available under http://www.mbt-

benchmarks.org.

3.3 Semantic Models

In addition to the internal model representation which is capable of representing abstract syntax
trees for a wide variety of formalisms, a semantic model is needed which is rich enough to encode
the different behaviours of these formalisms. As will be described in Section 4, operational
model semantics is the basis for automated test data generation, and it is also needed to specify
the conformance relation between test model and SUT, which is checked by the tests oracles
generated from the model (see below).

A wide variety of semantic models is available and suitable for test generation. Different
variants of labelled transition systems (LTS) are used for testing against process algebraic models,
like Hennessy’s acceptance tree semantics [14], the failures-divergence semantics of CSP (they
come in several variants [30]) and Timed CSP [35], the LTS used in I/O conformance test
theory [39, 40], or the Timed LTS used for the testing theory of Timed I/O Automata [37].
As an alternative to the LTS-based approach, Cavalcanti and Gaudel advocate for the Unifying
Theories of Programming [15], that are used, for example, as a semantic basis for the Circus
formalism and its testing theory [8], and for the COMPASS Modelling Language CML mentioned
above.

For our research and MBT tool building foundations we have adopted Kripke Structures,
mainly because our test generation techniques are close to techniques used in (bounded) model
checking, and many fundamental results from that area are formulated in the semantic framework
of Kripke Structures [10]. Recall that a Kripke Structure is a state transition system K =
(S,S0,R,L) with state space S, initial states S0 ⊆ S, transition relation R ⊆ S× S and labelling
function L : S→ P(AP) associating each state s with the set L(s) of atomic propositions p ∈ AP
which hold in this state. The behaviour of K is expressed by the set of computations π =
s0.s1.s2 . . . ∈ Sω , that is, the infinite sequences π of states fulfilling s0 ∈ S0 and R(si,si+1), i =
0,1,2, In contrast to LTS, Kripke Structures do not support a concept of events, these have
to be modelled by propositions becoming true when changing from one state to a successor

8 Industrial-Strength Model-Based Testing

state. For testing purposes, states s ∈ S are typically modelled by variable valuation functions
s : V →D where V is a set of variable symbols x mapped by s to their current value s(x) in their
appropriate domain (bool, int, float, . . .) which is a subset of D. The variable symbols are
partitioned into V = I ∪O∪M, where I contains the input variables of the SUT, O its output
variables, and M its internal model variables which cannot be observed during tests. Concurrency
can be modelled both for the synchronous (“true parallelism”) [7] and the interleaving variants
of semantics [10, Chapter 10]. Discrete or dense time can be encoded by means of a variable t̂
denoting model execution time. For dense-time models this leads to state spaces of uncountable
size, but the abstractions of the state space according to clock regions or clock zones, as known
from Timed Automata [10] can be encoded by means of atomic propositions and lead to finite-
state abstractions.

Observe that there should be no real controversy about whether LTS or Kripke Structures
are more suitable for describing behavioural semantics of models: De Nicola and Vaandrager [22]
have shown how to construct property-preserving transformations of LTS into Kripke Structures
and vice versa.

3.4 Conformance Relations

Conformance relations specify the correctness properties of a SUT by comparing its actual be-
haviour observed during test executions to the possible behaviours specified by the model. A
wide variety of conformance relations are known. For Mealy automata models, Chow used
an input/output-based equivalence relation which amounted to isomorphism between minimal
automata representing specification and implementation models [9]. in the domain of process
algebras Hennessy and De Nicola introduced the relation of testing equivalence which related
specification process behaviour to SUT process behaviour [11]. For Lotus, this concept was
explored in depth by Brinksma [6], Peleska and Siegel showed that it could be equally well ap-
plied for CSP and its refinement relations [25], and Schneider extended these results to Timed
CSP [34]. Tretmans introduced the concept of I/O conformance [39]. Vaandrager et. al. used
bi-similarity as a testing relation between timed automata representing specification and im-
plementation [37]. All these conformance relations have in common, that they are defined on
the model semantics, that is, as relations between computations admissible for specification and
implementation, respectively.

Conformance in the synchronous deterministic case. For our Kripke structures, a simple
variant of I/O conformance suffices for a surprisingly wide range of applications: for every trace3

s0.s1 . . .sn identified for test purposes in the model, the associated test execution trace s′0.s
′
1 . . .s

′
n

should have the same length and satisfy

∀i ∈ {0, . . . ,n} : si|I∪O∪{t̂} = s′i|I∪O∪{t̂}

that is, the observable input and output values, as well as the time stamps should be identical.
This very simple notion of conformance is justified for the following scenarios of reactive

systems testing: (1) The SUT is non-blocking on its input interfaces, (2) the most recent value
passed along output interfaces can always be queried in the testing environment, (3) each con-
current component is deterministic, and (4) the synchronous concurrency semantics applies. At

3Traces are finite prefixes of computations.

Jan Peleska 9

first glance, these conditions may seem rather restrictive, but there is a wide variety of practical
test applications where they apply: many SUT never refuse inputs, since they communicate via
shared variables, dual-ported ram, or non-blocking state-based protocols4. Typical hardware-in-
the-loop testing environments always keep the current output values of the SUT in memory for
evaluation purposes, so that even message-based interfaces can be accessed as shared variables
in memory (additionally, test events may be generated when an output message of the SUT
actually arrives in the test environment (TE). For safety-critical applications the control deci-
sions of each sequential sub-component of the SUT must be deterministic, so that the concept
of may tests [14], where a test trace may or may not be refused by the SUT does not apply. As a
consequence, the complexity and elegance of testing theories handling non-deterministic internal
choice and associated refusal sets and unpredictable outputs of the SUT are not applicable for
these types of systems. Finally, synchronous systems are widely used for local control appli-
cations, such as, for example, PLC controllers or computers adhering to the cyclic processing
paradigm.

In RT-Tester this conformance relation is practically applied, for example, when testing
software generated from SCADE models [12]: the SCADE tool and its modelling language
adhere to the synchronous paradigm. The software operates in processing cycles. Each cycle
starts with reading input data from global variables shared with the environment; this is followed
by internal processing steps, and the output variables are updated at the end of the cycle. Time
t̂ is a discrete abstraction corresponding to a counter of processing cycles.

Conformance in presence of non-determinism. For distributed control systems the syn-
chronous paradigm obviously no longer applies, and though single sequential SUT components
will usually still act in a deterministic way, their outputs will interleave non-deterministically
with those of others executing in a concurrent way. Moreover, certain SUT outputs may change
non-deterministically over a period of time, because the exact behavioural specification is un-
available. These aspects are supported in RT-Tester in the following ways.

• All SUT output interfaces y are associated with (1) an acceptable deviation εy from the
accepted value (so any observed value s′(y) deviating from the expected value s(y) by
|s′(y)− s(y)| ≤ ε is acceptable), (2) an admissible latency δ 0

y (so any observed value s′(y)

for the expected value s(y) is not timed out as long as s′(t̂)−s(t̂)≤ δ 0
y , and (3) an acceptable

time δ 1
y for early changes of y (so s(t̂)− s′(t̂)≤ δ 1

y is still acceptable).

• A time-bounded non-deterministic assignment statement y = UNDEF(t,c) stating that y’s
valuation is arbitrary for a duration of t time units, after which it should assume value c

(with an admissible deviation and an admissible delay).

• A model transformation turning the SUT model into a test oracle: it

– extends the variable space by one additional output variable y′ per SUT output y∈O,

– adds one concurrent checker component Oy per SUT output signal, operating on y
and y′,

– adds one concurrent component P processing the timed input output trace as ob-
served during the test execution, with observed SUT outputs written to y′ (instead
of y),

4In the avionic domain, for example, the sampling mode of the AFDX protocol [1] allows to transmit messages
in non-blocking mode, so that the receiver always reads the most recent data value.

10 Industrial-Strength Model-Based Testing

c0

c1

. . .

c0

c01

c1

[x > 0]/

y = y + x;

a = 2 ⇤ y;

[x > 0]/

y = y + x;

. . .

[z == 1]/

a = 0;

[z0 == 1]/

a = 0;

x : input
y, z: SUT model outputs
y0, z0: observed SUT outputs
a : internal model variable

Ci Ci

[|y0 � y| "y]/

a = 2 ⇤ y;

Figure 2: Example of original SUT component Ci and transformed component Ci.

– transforms each concurrent SUT component Ci into Ci.

This is described in more detail in the next paragraphs.

The transformed SUT components Ci operate as sketched in the example shown in Fig. 2.
Every write of Ci to some output y is performed in Ci as well, Ci however, waits for the corre-
sponding output value y′ observed during test execution to change until it fits to the expected
value of y (guard condition |y′− y| ≤ ε). This helps to adjust to small admissible delays of in
the expected change of y′ observed in the test: the causal relation “a is written after y has been
changed is preserved in this way. If Ci uses another output z (written, for example, by a concur-
rent component C j) in a guard condition, it is replaced by variable z′ containing the observed
output during test execution. This helps to check for correctness of relative time distances like
“output w is written 10ms after z has been changed”, if the actual output on z′ is delayed by an
admissible amount of time.

The concurrent test oracles Oy operate as shown in Fig. 3: If some component Ci writes to
an expected output y, the oracle traverses into control state s2. If the corresponding observed
output y′ is also adjusted in P, such that |y′− y| ≤ εy holds before δ 0

y time units have elapsed,
the change to y′ is accepted and the oracle transits to s0. Otherwise the oracle transits into the
error state. If the observed value changes unexpectedly above threshold εy, the oracle changes
into location s3. If the expected value y also changes shortly afterwards, this means that the
SUT was just some admissible time earlier than expected according to the model, and the change
is monitored via state s2 as before. If y, however, does not change for at least δ 1

y time units, we
have uncovered an illegal output change of the SUT and transit into the error state.

A test execution (that is, an input/output trace) performed with the SUT conforms to the
model if and only if the transformed model accepts the test execution processed by P in the
sense that none of the oracles transits into an error state. RT-Tester uses this conformance

Jan Peleska 11

s0

s1

error

s2 s3

after(t)

[y 6= y0]/

y0 = y;

[|y � y0| > "y ^ y = y0]

[y 6= y0]/

y0 = y;

after(�1
y)after(�0

y)

y: expected value
y0: last expected value
y0: observed value
"y: admissible deviation for y
�0
y: admissible latency for y
�1
y: admissible time for early changes of y0

�1
y < �0

y

UNDEF(t, c)/

y = c;
[|y � y0| "y]

Figure 3: Test oracle component observing one SUT output interface y.

relation for hardware-in-the-loop system testing, as, for example, in the tests of the automotive
controller network supporting the turn indication function in Daimler Mercedes vehicles [26].

3.5 Test-Modelling Related Challenges

With suitable test models available, test efficiency and test quality are improved in a considerable
way. The elaboration of a model, however, can prove to be a major hurdle for the success of
MBT in practice.

1. If complex models have to be completed before testing can start, this induces an unac-
ceptable delay for the proper test executions.

2. For complex SUT, like systems of systems, test models need to abstract from a large amount
of detail, because otherwise the resulting test model would become unmanageable.

3. The required skills for test engineers writing test models are significantly higher than for
test engineers writing sequential test procedures.

We expect that problem 1 will be solved in the future by incremental model development,
where test suites with increasing coverage and error detection capabilities can be run between
model increments. The current methods based on sequential state machines as described by
[41] may be extended to partially automated approaches where test model designers provide –
apart from interface descriptions – initial architectural frames and suggestions for internal state
variables, and automated machine learning takes these information into account. Furthermore,
the explicit state machine construction may be complemented by incremental elaboration of
transition relations: as pointed out by [27] for the purpose of test data generation, concurrent

12 Industrial-Strength Model-Based Testing

real-time models with complex state space are often better expressed by means of their transition
relation than by explicit concurrent state machines. Promising attempts to construct test models
in an incremental way from actual observations obtained during SUT simulations or experiments
with the actual SUT indicate that test model development can profit from “re-engineering” SUT
properties or model fragments from observations [29].

The problem of model complexity can be overcome by introducing contracts for the con-
stituent systems of a large system of systems. This type of abstractions is investigated, for
example, in the COMPASS project5.

With respect to the third problem it is necessary to point out in management circles that
competent testing requires the same skills as competent software development. So if modelling
skills are required for model-driven software and system development, these skills are required
for test engineers as well.

4 Requirements, Test Cases and Trustworthy Test Strategies

4.1 Requirements

If a test model has been elaborated in an adequate way, it will reflect the requirements to be
tested. At first glance, however, it may not be obvious to identify the model portions contributing
to a given requirement. Formally speaking, a requirement is reflected by certain computations
π = s0.s1.s2 . . . of the model. Computations can be identified, for example, by some variant of
temporal logic, and we use Linear Temporal Logic (LTL) [10, Chapter 3] for this purpose6.

Consider, for example, requirement REQ-001 (Flashing requires sufficient voltage) from the
sample application specified in Appendix A, Table 1. It can be readily expressed in LTL as

G(Voltage≤ 80⇒ X(¬(FlashLeft∨FlashRight) U Voltage > 80)) (1)

This is a black-box specification: it only refers to input and output interfaces of the SUT
and is valid without any model. With a model at hand, however, the specification can be
slightly simplified, because the relevant SUT reactions have been captured by state machine
OUTPUT CTRL (see Fig. 8)7.

G(Voltage≤ 80⇒ X(Idle U Voltage > 80))

In control state Idle the indication lights are never activated. Now the computations contributing
to REQ-001 are exactly the ones finally fulfilling the premise Voltage ≤ 80, where the effect of
the requirement may become visible, that is,

F(Voltage≤ 80)

It is unnecessary to specify the effects of the requirement in this formula, because we are only
considering valid model computations, and the effect is encoded in the model.

5http://www.compass-research.eu
6Recall that LTL uses 4 path operators: Gφ (globally φ) states that φ holds in every state of the computation.

Fφ (finally φ) states that φ holds in some computation state. Xφ states that φ holds in the next state following
the computation state under consideration. φ U ψ states that finally ψ will hold in a computation state and φ

fill hold in all previous states (if any).
7Control states are encoded as Boolean variables in the model state space, Idle = true means that state machine

OUTPUT CTRL is in control state Idle.

Jan Peleska 13

Observe that the application of LTL to characterise model computations associated with
a requirement differs from its utilisation for black-box specification as in formula (1), where
the behaviour required along those computations has to be specified in the formula, and only
interface variables of the system may be referenced. It also differs from the application of
temporal logics in property checking, where either all (a required property) or no computations
(a requirements violation) of the model should fulfil the formula.

Referring to internal model elements frequently simplifies the formulas for characterising
computations. Requirement REQ-002 (Flashing with 340ms/320ms on-off periods), for example,
is witnessed by all computations satisfying (see Fig.9)

F(OFF∧XON) (2)

4.2 Requirements Tracing to the Model

The SysML modelling formalism [23] provides syntactic means to identify requirements in the
model. In Fig.9, for example, the transitions ON→ OFF and OFF→ ON realise the flashing
period specified by REQ-002. This is documented by means of the «satisfy» relation drawn
from the transitions to the requirement. The interpretation of this relation is that every model
computation finally covering one of the two transitions or both contributes to the requirement.
Since computations cover OFF→ ON if and only if they fulfil F(OFF∧XON), the «satisfy»
relation from ON→OFF to REQ-002 is redundant. Other examples for such simple relationships
between model elements an requirements are shown in the state machine depicted in Fig 7.
Formally speaking, these simple relationships are of the type

F〈State Formula〉 (3)

where the state formula expresses the condition that a model element related to the requirement
is covered: for REQ-002, the formula (2) can be expressed in the form (3) as

F(OFF∧ (t̂− tOFF)≥ 320

Here tOFF denotes the timer variable that stores the current time whenever control state OFF is
entered and t̂ is the current model execution time, so (t̂−tOFF) expresses the fact that the relative
time event after(320ms) has occurred. In this case the transition OFF→ ON must be taken,
since UML/SysML state machine priority assigns higher priority to lower-level transitions: even
if transitions FLASHING→ FLASHING or FLASHING→ Idle of the state machine in Fig. 8
are enabled, transition OFF→ON has higher priority because it resides in the sub-maschine of
FLASHING.

Evaluations of system requirements in the automotive domain (in cooperation with Daim-
ler) have shown that approximately 80% of requirements are reflected by model computations
satisfying

F

(
h∨

i=0

φi

)
where the φi are state formulas, each one expressing coverage of a single model element.

About 20% of system requirements require more complex witnesses, whose LTL specification
involve nested path operators and state formulas referring to model elements, variable valuations
and time. For these situations, we use constraints containing the more complex LTL formulas,

14 Industrial-Strength Model-Based Testing

and the constraints are linked to their associated requirements by means of the «satisfy» relation.
Table 2 lists the requirements of the case study captured in Table 1, and associates the constraints
characterising the witness traces for each requirement.

4.3 Test Cases

Since tests must terminate after a finite number of steps, they consist of traces ι = s0 . . .sk
probing prefixes of relevant model computations π = s0 . . .sk.sk+1 If π is a witness for some
requirement R characterised by LTL formula φ , a suitable test case ι has to be constructed in
a way that at least does not violate φ while transiting through states s0 . . .sk, even though φ

will be violated by many possible extensions of ι . This problem is well-understood from the
field of bounded model checking (BMC), and Biere et. al. [3, 4] introduced a step semantics
for evaluating LTL formulas on finite model traces. To this end, expression 〈ϕ〉k−i

i states that
formula ϕ holds in state si of a trace of length k + 1. For the operators of LTL, their semantics
can then be specified inductively by8

• 〈G ϕ〉k0 =
∧k

i=0〈ϕ〉k−i
i (Gφ is not violated on ι = s0 . . .sk)

• 〈X ϕ〉k−i
i = 〈ϕ〉k−i−1

i+1

• 〈ϕ U ψ〉k−i
i = 〈ψ〉k−i

i ∨ (〈ϕ〉k−i
i ∧〈ϕ U ψ〉k−i−1

i+1), 〈Fψ〉k−i
i = 〈true U ψ〉k−i

i

Using this bounded step semantics, each LTL formula can be transformed into formulas of
the type

tc≡ J(s0)∧
n∧

i=0

Φ(si,si+1)∧G(s0, . . . ,sn+1) (4)

which we call symbolic test cases9 and which can be handled by the SMT solver. Conjunct
J(s0) characterises the current model state s0 from where the next test objective represented
by some LTL formula φ should be covered. This formula has to be translated into a predicate
G(s0, . . . ,sn+1), using the semantic rules listed above. Predicate Φ is the transition relation of
the model, and conjunct

∧n
i=0 Φ(si,si+1) ensures that the solution of G(s0, . . . ,sn+1) results in a

valid trace of the model, starting from s0.

Example 1. Consider LTL formula

φ ≡ (x = 0)U(y > 0∧X(Gz = 1))

and suppose we are looking for a witness trace ι = s0 . . .sn . . . with a length of at least n + 1 or
longer. Then the SMT solver is activated with the following BMC instances to solve.
In step 0, try solving

bmc0 ≡
(

n∧
i=0

Φ(si,si+1)

)
∧ s0(y) > 0∧

(
n+1∧
i=1

si(z) = 1

)
8The semantics presented in [4] has been simplified for our purposes. In [4], the authors consider possible cycles

in the transition graph which are reachable within a bounded number of steps from s0. This is used to prove the
existence of witnesses for formulas whose validity can only be proven on infinite paths. For testing purposes, we
are only dealing with finite traces anyway; this leads to the slightly simplified bounded step semantics presented
here.

9In the context of BMC, these formulas are called bounded model checking instances.

Jan Peleska 15

If this succeeds we are done: the solution of bmc0 is a legal trace ι of the model, since Φ(si,si+1)
holds for each pair of consecutive states in ι . Formula φ holds on ι because y > 0 is true in s0
and z = 1 holds for states s1 . . .sn+1, so the right-hand side operand of U is fulfilled in the initial
state of this trace.

Otherwise we try to get a witness for the following formula in step 1.

bmc1 ≡
(

n∧
i=0

Φ(si,si+1)

)
∧ s0(x) = 0∧ s1(y) > 0∧

(
n+1∧
i=2

si(z) = 1

)

If no solution exists we continue with step 2.

bmc2 ≡
(

n∧
i=0

Φ(si,si+1)

)
∧ s0(x) = 0∧ s1(x) = 0∧ s2(y) > 0∧

(
n+1∧
i=3

si(z) = 1

)

and so on, until a solution is found or no solution of length n + 1 is feasible. �
While LTL formulas are well-suited to specify computations fulfilling a wide variety of con-

straints, it has to be noted that it is also capable of defining properties of computations that
will never be tested in practice, because they can only be verified on infinite computations and
not on finite trace prefixes thereof (e.g., fairness properties). It is therefore desirable to identify
a subset of LTL formulas that are tailored to the testers’ needs for specifying finite traces with
certain properties. This subset is called SafetyLTL and has been introduced in [36]. It is suitable
for defining safety properties of computations, that is, properties that can always be falsified on
a finite computation prefix. The SafetyLTL subset of LTL can be syntactically characterised as
follows.

• Negation is only allowed before atomic propositions (so-called negation normal form).

• Disjunction ∨ and conjunction ∧ are always allowed.

• Next operators X, globally operators G and weakly-until operators W are allowed10.

• Semantically equivalent formulas also belong to SafetyLTL.

Concrete test data is created by solving constraints of the type displayed in Equation (4)
using the integrated SMT solver SONOLAR [27]. Finally the test procedure generator takes
the solutions calculated by the SMT solver and turns them into stimulation sequences, that is,
timed input traces to the SUT. Moreover, the test procedure generator creates test oracles from
the model components describing the SUT behaviour.

In requirements-driven testing, G(s0, . . . ,sn+1) specifies traces that are witnesses of a certain
requirement R. Indeed, Formula (4) specifies an equivalence class of traces that are suitable for
testing R. In model-driven testing, G(s0, . . . ,sn+1) specifies traces that are suitable for covering
certain portions (control states, transitions, interfaces, . . .) of the model. In the paragraphs
below it will be explained how requirements-driven and model-driven testing are related to each
other.

10Recall that the weakly-until operator is defined as φ W ψ ≡def (φ U ψ)∨Gφ , and that the until operator can
be expressed by φ U ψ ≡ (φ W ψ)∧Fψ.

16 Industrial-Strength Model-Based Testing

4.4 Model Coverage Test Cases

Since adequate test models express all SUT requirements to be tested, it is reasonable to specify
and perform test cases achieving model coverage. As we have seen above, a behavioural model
element (state machine control state, transition, operation, . . .) is covered by a trace ι = s0 . . .sk,
if the element’s behaviour is exercised during some transition si → si+1. For a control state c
this means that si+1(c) = true, and, consequently, the state’s entry action (if any) is executed.
For a transition this means that its firing condition becomes true in some si. Operations f are
covered when they are associated with actions of covered states or transitions executing f .

There exists a wide variety of model coverage strategies, many of them are discussed in [42].
The standards for safety-critical systems development and V&V have only recently started to
consider the model-driven development and V&V paradigm. It seems that the avionic stan-
dard RTCA DO-178C [32] is currently the most advanced with respect to model-based systems
engineering. It requires to achieve operation coverage, transition coverage, decision coverage,
and equivalence class and boundary value coverage, when verifying design models [31, Table
MB.6-1]. Neither the standard, nor [42], however, elaborate on coverage of timing conditions
(e.g., clock zones in Time Automata) or the coverage of execution state vectors of concurrent
model components.

In RT-Tester, the following model coverage criteria are currently implemented: (1) basic
control state coverage, (2) transition coverage, MC/DC coverage, (3) hierarchic transition cov-
erage11 with or without MC/DC coverage, (4) equivalence class and boundary value coverage,
(5) basic control state pairs coverage, (6) interface coverage and (7) block coverage.

Basic control state pairs coverage exercises all feasible control state combinations of concur-
rent state machines in writer-reader relationship. The equivalence class coverage technique in
combination with basic control state pairs coverage also produces a (not necessarily complete)
coverage of clock zones.

Each of these coverage criteria can be specified by means of LTL formulas or, equivalently,
BMC instances.

Example 2. For state machine FLASH CTRL (Fig. 6), the hierarchic transition coverage is
achieved by test cases

tc1 ≡ F(EMER OFF∧EmerFlash)

tc2 ≡ F(EMER ACTIVE∧TurnIndLvr 6= 0∧
((TurnIndLvr = 1) 6= Left1∨ (TurnIndLvr = 2) 6= Right1))

tc3 ≡ F(EMER ACTIVE∧ (Left1∨Right1)∧TurnIndLvr = 0)

tc4 ≡ F(TURN IND OVERRIDE∧TurnIndLvr = 0)

tc5 ≡ F(¬EmerFlash∧EMER ACTIVE∧
((TurnIndLvr 6= 0∧TurnIndLvr = Left1∨TurnIndLvr = Right1)∨
(TurnIndLvr = 0∧¬(Left1∨Right1)))

tc6 ≡ F(¬EmerFlash∧TURN IND OVERRIDE∧TurnIndLvr 6= 0)

�

11This applies to higher-level transitions of hierarchic state machines: they are exercised several times with as
many subordinate control states as possible.

Jan Peleska 17

4.5 Automated Compilation of Traceability Data

Having identified the test cases suitable for model coverage, these can be related to requirements
in an automated way.

• If requirement R is linked to model elements by «satisfy» relationships, then the test cases
covering these elements are automatically related to R.

• If requirement R is characterised by a LTL formula φ not directly related to model elements,
we proceed as follows.

– Transform φ into disjunctive normal form φ ≡∨m
i=0 φi and associate test cases for each

φi separately.

– Each test case tc≡ ψ derived from the model is related to R, if ψ ⇒ φi holds.

– If test case tc ≡ ψ is neither stronger nor weaker than the requirement in the sense
that ψ ∧φi has a solution, add a new test case tc′ ≡ ψ ∧φi and relate tc′ to R.

– If at least one of two test cases tc1 ≡ Fψ1 and tc2 ≡ Fψ2 implies the requirement and
tc′ ≡ F(ψ1∧ψ2) has a solution, add tc′ to the test case database and trace it to R.

Example 3. Consider requirement REQ-002 (Flashing with 340ms/320ms on-off periods) of
the example from Table 1. It is characterised by covering transitions ON→OFF and OFF→ON
(see Table 2). By tracing these transitions back to model coverage test cases, the following cases
can be identified, and these trace back to REQ-002.

tc7 ≡ F(OFF∧ (t̂− tOFF)≥ 320)

tc8 ≡ F(OFF∧ (t̂− tOFF)≥ 320∧TurnIndLvr = 1)

tc9 ≡ F(OFF∧ (t̂− tOFF)≥ 320∧TurnIndLvr = 2)

tc10 ≡ F(OFF∧ (t̂− tOFF)≥ 320∧EMER ACTIVE)

tc11 ≡ F(OFF∧ (t̂− tOFF)≥ 320∧TURN IND OVERRIDE)

�
The test cases listed here are only a subset of the complete list that traces back to REQ-

002. Test cases tc8, tc9 result from combining interface coverage on SUT input TurnIndLvr
with coverage of the OFF→ON. Cases tc10, tc11 result from combining basic control state pairs
coverage with the transition coverage. Test case tc7 is redundant if any of the others is performed.
It is quite obvious that the test case generation technique defined above runs into combinatorial
explosion problems. Even for the small sample system discussed here, the list of test cases from
Example 3 could be extended by

tc12 ≡ F(OFF∧ (t̂− tOFF)≥ 320∧EMER ACTIVE∧TurnIndLvr = 0)

tc13 ≡ F(OFF∧ (t̂− tOFF)≥ 320∧EMER ACTIVE∧TurnIndLvr = 1)

tc14 ≡ F(OFF∧ (t̂− tOFF)≥ 320∧EMER ACTIVE∧TurnIndLvr = 2)

. . .

4.6 Test Case Selection According to Criticality

It is quite obvious that the number of test cases related to a requirement can become quite vast,
and that some of the test cases investigate more specific situations than others. This problem

18 Industrial-Strength Model-Based Testing

is closely related to the problem of exhaustive testing which will be discussed below. Since an
exhaustive execution of all test case combinations related to a requirement will be impossible
for fair-sized systems, a justified reduction of the potentially applicable test cases to a smaller
collection is required. In the case of safety-critical systems development, such a justification
should conform to the standards applicable for V&V of these systems.

In the case of avionic systems, the RTCA DO-178C standard [32] requires structural tests
with respect to data and control coupling and full requirements coverage through testing, but
does not specify when a requirement has been verified with a sufficient number of test cases.
Instead, the standard gives test end criteria by setting code coverage goals, the coverage to be
achieved depending on the SUT’s criticality [31, MB.C-7]: for assurance level 1 systems (highest
criticality), MC/DC coverage has to be achieved, for level 2 decision coverage, and for level 3
statement coverage. For levels 4 and 5, only high-level requirements have to be covered without
setting any code coverage goals, and for assurance level 5 the requirement to test data and
control coupling is dropped.

As a consequence, the model-based test case coverage can be tuned according to the code
coverage achieved, whenever the source code is available and the assurance level is in 1 — 3:
start with basic control state coverage cases related to the requirement, increase coverage by
adding hierarchic and MC/DC coverage test cases until the required code coverage is achieved.
Add interface and basic control state pairs coverage cases until the data and control coupling
coverage has been achieved as well. For levels 4 or 5, no discussion is necessary, since here any
“reasonable” test case assignment to each high-level requirement is acceptable, due to the low
criticality of the SUT.

When MBT is applied on system level, however, it will generally be infeasible to measure
code coverage achieved during system tests. For systems of systems, in particular, system-level
tests will never cover any significant amount of code coverage, and the coverage values achieved
will not be obtainable in most cases, both for technical and for security reasons. Here we suggest
to proceed as follows.

• For assurance level 3, exercise

– interface tests – this ensures verification of data and control coupling,

– basic control state coverage test cases,

– refine these test cases tc ≡ ψ only if requirements have stricter characterisations φi;
in this case add tc′ ≡ ψ ∧φi.

• For assurance level 2, follow the same pattern, but use transition coverage test cases.

• For assurance level 1, exercise

– interface tests,

– basic control state pairs coverage test cases to refine the data and control coupling
tests (recall that these test cases stem from writer-reader analyses),

– MC/DC coverage test cases in combination with hierarchic transition coverage,

– first-level refinements of test cases related to requirements as illustrated in Example 3,

– second level refinements (as in test cases tc12, tc13, tc14 above), if the additional con-
juncts have direct impact on the requirement.

Following these rules, and supposing that our sample system were of assurance level 1, the test
cases displayed in Example 3 would be necessary. Test cases tc12, tc13, tc14, however, would not

Jan Peleska 19

be required, since the TurnIndLvr has no impact on REQ-002 according to the model: the risk of
a hidden impact of this interface on the requirement has already been taken into account when
testing tc8, tc9.

4.6.1 Test Strategies Proving Conformance

An alternative for justifying test strategies consists in proving that they will finally converge
to an exhaustive test suite establishing some conformance relation between model and SUT.
This approach has a long tradition: one of the first contributions in this field was Chow’s W-
Method [9] applicable for minimal state machines, which was generalised and extended into
many directions, so that even in the core of the exhaustive test strategy for timed automata [37]
some argument from the W-Method is used.

Though execution of exhaustive test suites will generally be infeasible in practice, convergence
to exhaustive test suites ensures that new test cases added to the suite will really increase the
assurance level by a positive amount: intuitively designed test strategies often do not possess
this property, because additional test cases may just re-test SUT aspects already covered by
existing ones.

The known exhaustive strategies typically operate on finite data types (discrete events, or
variables with data ranges that can easily be enumerated). It is an interesting research challenge
whether similar results can be obtained in presence of large data types, if application of equiv-
alence class partitioning is justified. In [13] the authors formalise the concept of equivalence
class partitioning and prove that exhaustive suites can be constructed for white-box test situa-
tions. In [18] this approach is currently generalised within the COMPASS project with respect
to black-box testing and semantic models that are more general than the one underlying the
results presented in [13].

4.7 Challenges to Test Case Generation and Test Strategy Design

The size of SoS state spaces implies that exhaustive investigation of the complete concrete state
space will certainly be infeasible. We suggest to tackle this problem by two orthogonal strategies,
as is currently investigated in the COMPASS project [17].

• On constituent system level, different behaviours associated with the same local mission
threads12 will be comprised in equivalence classes. This reduces the complexity problem
for SoS system testing to covering combinations of classes of constituent system behaviours
instead of sequences of concrete state vector combinations.

• On SoS system level, “relevant” class combinations are identified by means of different
variants of impact analysis, such as data flow analyses or investigation of contractual
dependencies. Behaviours of constituent systems which do not affect the relevant class
combinations under consideration will be selected according to the principle of orthogo-
nal arrays [28], because this promises an effective combinatorial distribution of unrelated
behaviours exercised concurrently with the critical ones.

Apart from size and complexity, SoS present another challenge, because they typically change
their configuration dynamically during run-time. The dynamic adaptation of test objectives is

12Mission threads are end-to-end tests; in the context described here, mission threads are executed on constituent
system level.

20 Industrial-Strength Model-Based Testing

particularly relevant for run-time acceptance testing of changing SoS configurations. In contrast
to development models for SoS, however, we only have to consider bounded changes of SoS
configurations, because every test suite can only consider a bounded number of configurations
anyway. It remains to investigate how to determine configurations possessing sufficient error
detection strength. Results from the field of mutation testing will help to determine this strength
in a systematic and measurable way.

A further problem for systems of SoS complexity is presented by the fact that not every
behaviour can be full captured in the model, which results in under-specification and non-
determinism. Test strategy elaboration in presence of this problem be achieved in the following
way.

• The SoS system behaviour is structured into several top-level operational modes. It is
expected that switching between these modes can be performed in a deterministic way for
normal behaviour tests: it is unlikely that SoS performing operational mode changes only
on a random basis are acceptable and “testworthy”.

• Entry into failure modes is non-deterministic, but can be initiated in a deterministic way
for test purposes by means of pre-planned failure injections.

• The behaviour in each operational mode is not completely deterministic, but can be cap-
tured by sets of constraints governing the acceptable computations in each mode. Test
oracles will therefore no longer check for explicit output traces of the SUT but for compli-
ance of the traces observed with the constraints applicable in each mode.

• For test stimulation purposes the SMT solver computes sequences of feasible mode switches
and the test data provoking these switches.

• Incremental test model elaboration can be performed by adding constraints identified dur-
ing test observations to the modes where they are applicable. To this end, techniques from
machine learning seem to be promising.

Justification of test strategies will be performed by proving that they will “converge” to
exhaustive tests proving some compliance relation between SUT and reference model.

5 Conclusion

In this article several aspects of industrial-strength model-based testing and its underlying meth-
ods have been presented. A reference tool has been described, so that the presentation may serve
as a benchmark for alternative tools capable of handling test campaigns of equal or even higher
complexity. Readers are invited to join the discussion on suitable benchmarks for MBT tools –
initial suggestions on benchmarking can be found in [26] – and to contribute case studies and
models to the MBT benchmark website http://www.mbt-benchmarks.org.

A further topic beyond the scope of this paper is of considerable importance for tool builders:
MBT tools automating test campaigns for safety-relevant systems have to be qualified, and stan-
dards like RTCA DO-178C [32] for the avionic domain, CENELEC EN650128 [38] for the railway
domain, and ISO 26262 [19] for the automotive domain have rather precise policies about how
tool qualification can be obtained. A detailed comparison between tool qualification require-
ments of these standards is presented in [16], and it is described in [5] how tool qualification has
been obtained for RT-Tester. We believe that the complexity of the algorithms required in MBT

Jan Peleska 21

tools justifies that effort is spent on their qualification, so that their automated application will
not mask errors of the SUT due to undetected failures in the tool.

Acknowledgements. The author would like to thank the organisers of the MBT 2013 for
giving him the opportunity to present the ideas summarised in this paper. Special thanks go
to Jörg Brauer, Elena Gorbachuk, Wen-ling Huang, Florian Lapschies and Uwe Schulze for
contributing to the results presented here.

References

[1] AERONAUTICAL RADIO, INC. (2009): Aircraft Data Network, Part 7, Avionics Full-Duplex
Switched Ethernet Network. AERONAUTICAL RADIO, INC., 2551 Riva Road, Annapolis, Mary-
land 21401-7435.

[2] Paul Baker, Oystein Haugen, Zhen Ru Dai, Clay Williams & Jens Grabowski (2008): Model-Driven
Testing – Using the UML Testing Profile. Springer, Berlin Heidelberg.

[3] Armin Biere, Alessandro Cimatti, Edmund M. Clarke & Yunshan Zhu (1999): Symbolic Model Check-
ing without BDDs. In: Proceedings of the 5th International Conference on Tools and Algorithms for
Construction and Analysis of Systems, TACAS ’99, Springer-Verlag, London, UK, UK, pp. 193–207,
doi:10.1007/3-540-49059-0 14.

[4] Armin Biere, Keijo Heljanko, Tommi Junttila, Timo Latvala & Viktor Schuppan (2006): Linear
Encodings of Bounded LTL Model Checking. Logical Methods in Computer Science 2(5), pp. 1–64,
doi:10.2168/LMCS-2(5:5)2006.

[5] Jörg Brauer, Jan Peleska & Uwe Schulze (2012): Efficient and Trustworthy Tool Qualification for
Model-Based Testing Tools. In Brian Nielsen & Carsten Weise, editors: Testing Software and Systems.
Proceedings of the 24th IFIP WG 6.1 International Conference, ICTSS 2012, Aalborg, Denmark,
November 2012, Lecture Notes in Computer Science 7641, Springer, Heidelberg Dordrecht London
New York, pp. 8–23, doi:10.1007/978-3-642-34691-0 3.

[6] E. Brinksma (1988): A Theory for the Derivation of Tests. In S. Aggarwal & K. Sabnani, editors:
Protocol Specification Testing and Verification VIII (PSTV ‘88), pp. 63–74.

[7] R. E. Bryant, P. Chauhan, E. M. Clarke & A. Goel (2000): A Theory of Consistency for Modular
Synchronous Systems. In W. A. Hunt & S. D. Johnson, editors: Formal Methods in Computer-Aided
Design (FMCAD), Lecture Notes in Computer Science 1954, Springer, pp. 486–504, doi:10.1007/3-
540-40922-X 30.

[8] A. L. C. Calvalcanti & M.-C. Gaudel (2011): Testing for Refinement in Circus. Acta Informatica
48(2), pp. 97–147, doi:10.1007/s00236-011-0133-z.

[9] Tsun S. Chow (1978): Testing Software Design Modeled by Finite-State Machines. IEEE Transactions
on Software Engineering SE-4(3), pp. 178–186, doi:10.1109/TSE.1978.231496.

[10] Edmund M. Clarke, Orna Grumberg & Doron A. Peled (1999): Model Checking. The MIT Press,
Cambridge, Massachusetts.

[11] R. De Nicola & M. Hennessy (1984): Testing Equivalences for Processes. Theoretical Computer
Science 34, pp. 83–133, doi:10.1016/0304-3975(84)90113-0.

[12] Esterel Technologies: SCADE Suite Product Description. http://www.estereltechnologies.com.

[13] Wolfgang Grieskamp, Yuri Gurevich, Wolfram Schulte & Margus Veanes (2002): Generating Finite
State Machines from Abstract State Machines. ACM SIGSOFT Software Engineering Notes 27(4),
pp. 112–122, doi:10.1145/566171.566190.

[14] M. Hennessy (1988): Algebraic Theory of Processes. MIT Press, Cambridge, Massachusetts, London.

http://dx.doi.org/10.1007/3-540-49059-0_14
http://dx.doi.org/10.2168/LMCS-2(5:5)2006
http://dx.doi.org/10.1007/978-3-642-34691-0_3
http://dx.doi.org/10.1007/3-540-40922-X_30
http://dx.doi.org/10.1007/3-540-40922-X_30
http://dx.doi.org/10.1007/s00236-011-0133-z
http://dx.doi.org/10.1109/TSE.1978.231496
http://dx.doi.org/10.1016/0304-3975(84)90113-0
http://dx.doi.org/10.1145/566171.566190

22 Industrial-Strength Model-Based Testing

[15] C. A. R. Hoare & H. Jifeng (1998): Unifying Theories of Programming. Prentice-Hall.

[16] Wen ling Huang, Jan Peleska & Uwe Schulze (2013): Test Automation Support. Technical Report
D34.1, COMPASS Comprehensive Modelling for Advanced Systems of Systems.

[17] Wen ling Huang, Jan Peleska & Uwe Schulze (to appear 2014): Specialised Test Strategies. Technical
Report D34.2, COMPASS Comprehensive Modelling for Advanced Systems of Systems.

[18] Wen-ling Huang & Jan Peleska (2012): Specialised Test Strategies. Public Document, COMPASS
Comprehensive Modelling for Advanced Systems of Systems.

[19] (2009): Road Vehicles - Functional Safety - Part 8: Supporting Processes. Technical Report, Inter-
national Organization for Standardization. ICS 43.040.10.

[20] ISO/DIS 26262-4 (2009): Road vehicles – functional safety – Part 4: Product development: system
level. Technical Report, International Organization for Standardization.

[21] Helge Loding & Jan Peleska (2010): Timed Moore Automata: Test Data Generation and Model
Checking. Software Testing, Verification, and Validation, 2008 International Conference on 0, pp.
449–458, doi:10.1109/ICST.2010.60.

[22] Rocco De Nicola & Frits Vaandrager (1990): Action versus State based Logics for Transition Systems.
In Irène Guessarian, editor: Semantics of Systems of Concurrent Processe, LNCS 469, Springer-
Verlag, Berlin, Heidelberg, pp. 407–419, doi:10.1007/3-540-53479-2 17.

[23] Object Management Group (2010): OMG Systems Modeling Language (OMG SysMLT M). Technical
Report, Object Management Group. OMG Document Number: formal/2010-06-02.

[24] OMG (2011): OMG Unified Modeling Language (OMG UML) Superstructure ver. 2.4.1.
www.uml.org/spec/UML/2.4.1/Superstructure/PDF/.

[25] J. Peleska & M. Siegel (1997): Test Automation of Safety-Critical Reactive Systems. South African
Computer Jounal 19, pp. 53–77.

[26] Jan Peleska, Artur Honisch, Florian Lapschies, Helge Löding, Hermann Schmid, Peer Smuda, Elena
Vorobev & Cornelia Zahlten (2011): A Real-World Benchmark Model for Testing Concurrent Real-
Time Systems in the Automotive Domain. In Burkhart Wolff & Fatiha Zaidi, editors: Testing
Software and Systems. Proceedings of the 23rd IFIP WG 6.1 International Conference, ICTSS
2011, LNCS 7019, IFIP WG 6.1, Springer, Heidelberg Dordrecht London New York, pp. 146–161,
doi:10.1007/978-3-642-24580-0 1.

[27] Jan Peleska, Elena Vorobev & Florian Lapschies (2011): Automated Test Case Generation with
SMT-Solving and Abstract Interpretation. In Mihaela Bobaru, Klaus Havelund, Gerard J. Holzmann
& Rajeev Joshi, editors: Nasa Formal Methods, Third International Symposium, NFM 2011, LNCS
6617, Springer, Pasadena, CA, USA, pp. 298–312, doi:10.1007/978-3-642-20398-5 22.

[28] M. S. Phadke (1989): Quality Engineering Using Robust Design. Prentice Hall, Englewood Cliff, NJ.

[29] F. Rogin, T. Klotz, G. Fey, R. Drechsler & S. Rulke (2009): Advanced Verification by Automatic
Property Generation. IET Computers & Digital Techniques 3(4), pp. 338–353, doi:10.1049/iet-
cdt.2008.0110. Available at http://link.aip.org/link/?CDT/3/338/1.

[30] A. W. Roscoe (2010): Understanding Concurrent Systems. Springer.

[31] RTCA SC-205/EUROCAE WG-71 (2011): Model-Based Development and Verification Supplement
to DO-178C and DO-278A. RTCA/DO-331, RTCA, Inc., 1140 Connecticut Avenue, N.W., Suite
1020, Washington, D.C. 20036.

[32] RTCA SC-205/EUROCAE WG-71 (2011): Software Considerations in Airborne Systems and Equip-
ment Certification. RTCA/DO-178C, RTCA, Inc., 1140 Connecticut Avenue, N.W., Suite 1020,
Washington, D.C. 20036.

[33] RTCA,SC-167 (1992): Software Considerations in Airborne Systems and Equipment Certification,
RTCA/DO-178B. RTCA.

http://dx.doi.org/10.1109/ICST.2010.60
http://dx.doi.org/10.1007/3-540-53479-2_17
http://dx.doi.org/10.1007/978-3-642-24580-0_1
http://dx.doi.org/10.1007/978-3-642-20398-5_22
http://dx.doi.org/10.1049/iet-cdt.2008.0110
http://dx.doi.org/10.1049/iet-cdt.2008.0110
http://link.aip.org/link/?CDT/3/338/1

Jan Peleska 23

[34] S. Schneider (1995): An Operational Semantics for Timed CSP. Information and Computation 116,
pp. 193–213, doi:10.1006/inco.1995.1014.

[35] S. Schneider (2000): Concurrent and Real-time Systems – The CSP Approach. Wiley and Sons Ltd.

[36] A. P. Sistla (1994): Liveness and Fairness in Temporal Logic. Formal Aspects of Computing 6(5),
pp. 495–512, doi:10.1007/BF01211865.

[37] J.G. Springintveld, F.W. Vaandrager & P.R. D’Argenio (2001): Testing timed automata. Theoretical
Computer Science 254(1-2), pp. 225–257, doi:10.1016/S0304-3975(99)00134-6.

[38] European Committee for Electrotechnical Standardization (2001): EN 50128 – Railway applications
– Communications, signalling and processing systems – Software for railway control and protection
systems. CENELEC, Brussels.

[39] Jan Tretmans (1996): Test generation with inputs, outputs and repetitive quiescence. Software –
Concepts and Tools 17(3), pp. 103–120.

[40] Jan Tretmans (1999): Testing Concurrent Systems: A Formal Approach. In J.C.M. Naeten &
S. Mauw, editors: CONCUR’99 – 10th Int. Conference on Concurrency Theory, Lecture Notes in
Computer Science 1664, Springer, pp. 46–65, doi:10.1007/3-540-48320-9 6.

[41] Frits Vaandrager (2012): Active Learning of Extended Finite State Machines. In Brian Nielsen &
Carsten Weise, editors: Testing Software and Systems. Proceedings of the 24th IFIP WG 6.1 Inter-
national Conference, ICTSS 2012, Aalborg, Denmark, November 2012, Lecture Notes in Computer
Science 7641, Springer, Heidelberg Dordrecht London New York, pp. 5–7, doi:10.1007/978-3-642-
34691-0 2.

[42] Stephan Weißleder (2010): Test Models and Coverage Criteria for Automatic Model-Based Test
Generation with UML State Machines. Doctoral thesis, Humboldt-University Berlin, Germany.

[43] J. Woodcock, A. Cavalcanti, J. Fitzgerald, P. Larsen, A. Miyazawa & S. Perry (2012): Fea-
tures of CML: a Formal Modelling Language for Systems of Systems. IEEE Systems Journal 6,
doi:10.1109/SYSoSE.2012.6384144.

A Case Study: Turn Indication Control Function

As a case study we consider the turn indication function of a vehicle providing left/right in-
dication and emergency flashing by means of exterior lights flashing with a given frequency.
Left/right indication is switched on by means of the turn indicator lever with its positions 0
(neutral), 1 (left), and 2(right). Emergency flashing is controlled by means of a switch with
positions 0 (off) and 1 (on). Activating the indication lights is subject to the condition that the
available voltage is sufficiently high. The requirements for the turn indication function are as
shown in Table 1.

The SysML test model for this system structured into TE and SUT blocks, as shown in
Fig. 4. The interfaces shown in this diagram are the observable SUT outputs and writable
inputs that may be accessed by the TE. RT-Tester allows for SysML properties and signal
events to be exchanged between SUT and TE model components. The tool provides interface
modules mapping their valuations onto concrete software or hardware interfaces and vice versa.
In a software integration test the turn indication lever values and the status of the emergency
switch may be passed to the SUT, for example, by means of shared variables. The SUT outputs
(left-hand side lamps on/off, right-hand side lamps on/off) can also be represented by Boolean
output variables of the SUT. In a HW/SW integration test interface modules would map the
turn indication lever status and the emergency flash button to discrete inputs to the SUT. In a
system integration test the actual voltage and the current placed by the SUT on the indication

http://dx.doi.org/10.1006/inco.1995.1014
http://dx.doi.org/10.1007/BF01211865
http://dx.doi.org/10.1016/S0304-3975(99)00134-6
http://dx.doi.org/10.1007/3-540-48320-9_6
http://dx.doi.org/10.1007/978-3-642-34691-0_2
http://dx.doi.org/10.1007/978-3-642-34691-0_2
http://dx.doi.org/10.1109/SYSoSE.2012.6384144

24 Industrial-Strength Model-Based Testing

Table 1: Requirements of the turn indication control system

Requirement Description

REQ-001 Flashing requires sufficient
voltage

Indication lights are only active, if the electrical voltage (input Voltage)
is > 80% of the nominal voltage.

REQ-002 Flashing with
340ms/320ms on-off periods

If any lights are flashing, this is done synchronously with a 340ms ON –
320ms OFF period.

REQ-003 Switch on turn indication
left

An input change from turn indication lever state TurnIndLvr = 0 or 2
to TurnIndLvr = 1 switches indication lights left (output FlashLeft) into
flashing mode and switches indication lights right (output FlashRight)
off.

REQ-004 Switch on turn indication
right

An input change from turn indication lever state TurnIndLvr = 0 or 1
to TurnIndLvr = 2 switches indication lights right (output FlashRight)
into flashing mode and switches indication lights left (output FlashLeft)
off.

REQ-005 Emergency flashing on
overrides left/right flashing

An input change from EmerFlash = 0 to EmerFlash = 1 switches indi-
cation lights left (output FlashLeft) and right (output FlashRight) into
flashing mode, regardless of any previously activated turn indication.

REQ-006 Left-/right flashing over-
rides emergency flashing

Activation of the turn indication left or right overrides emergency flash-
ing, if the latter has been activated before.

REQ-007 Resume emergency flash-
ing

If turn indication left or right is switched off and emergency flashing is
still active, emergency flashing is continued or resumed, respectively.

REQ-008 Resume turn indication
flashing

If emergency flashing is turned off and turn indication left or right is still
active, the turn indication is continued or resumed, respectively.

REQ-009 Tip flashing If turn indication left or right is switched off before three flashing periods
have elapsed, the turn indication will continue until three on-off periods
have been performed.

Jan Peleska 25

Figure 4: Interface between TE and SUT.

lamps would be measured. The interface abstraction required for the test level is specified by a
signal map that associates abstract SysML model interfaces with concrete interfaces of the test
equipment.

The structural view on the SUT has to be decomposed further, until each block is associated
with a sequential behaviour. For the case study discussed here, the SUT is further decomposed
into two concurrent functions as depicted in Fig. 5. Functional component FLASH CTRL per-
forms the decisions about left/right indication or emergency flashing. The decision is communi-
cated to component OUTPUT CTRL by means of internal interface Left (flashing on left-hand
side indication lights if Left = 1) and Right (flashing on right-hand side indication lights if Right
= 1). Block OUTPUT CTRL controls the flashing cycles and switches off indication lamps if
the voltage gets too low. The FLASH CONTROL component operates as follows.

• As long as the emergency flash switch has not been activated, Left/Right are set according

Figure 5: Functional decomposition of the SUT.

26 Industrial-Strength Model-Based Testing

Figure 6: State machine controlling left/right and emergency flashing.

to the turn indication lever status. This is specified in do activity doEmerOff.

• As soon as the emergency flash switch EmerFlash is switched on, Left/Right are set as
specified in sub-state machine EMER ON (Fig 7).

• When entering EMER ON, Left/Right are both set to true and the state machine remains
in control state EMER ACTIVE.

• When the turn indication lever is changed to left or right position, emergency flashing is
overridden, and left/right indication is performed.

• Emergency flashing is resumed if the turn indication lever is switched into neutral position.

Function OUTPUT CTRL sets the SUT output interfaces FlashLeft and FlashRight (Fig. 8
and 9). The indication lamps are switched according to the internal interface state Left/Right, if
the voltage is greater than 80% of the nominal voltage. After the lamps have been on for 340ms,
they are switched off and stay so until 320ms have passed. A counter FlashCtr is maintained:
if the turn indication lever is switched from left or right back to the neutral position before 3
flashing periods have been performed, left/right indication will remain active until the end of
these 3 periods.

Jan Peleska 27

Figure 7: Decomposition of control state EMER ON.

Table 2: Requirements and associated constraints identifying witness computations.

Requirement Constraint

REQ-001 Flashing requires sufficient voltage «Constraint» F(Voltage≤ 80)

REQ-002 Flashing with 340ms/320ms on-off
periods

«Transition» ON→OFF «Transition» OFF→ON

REQ-003 Switch on turn indication left «Constraint» F(FlashLeft = 1∧FlashRight = 0)

REQ-004 Switch on turn indication right «Constraint» F(FlashLeft = 0∧FlashRight = 1)

REQ-005 Emergency flashing on overrides
left/right flashing

«Constraint» F(EMER OFF∧TurnIndLvr > 0∧EmerFlash)

REQ-006 Left-/right flashing overrides emer-
gency flashing

«Atomic State» TURN IND OVERRIDE

REQ-007 Resume emergency flashing «Transition»TURN IND OVERRIDE→ EMER ACTIVE

REQ-008 Resume turn indication flashing «Constraint»
F(EMER ACTIVE∧¬EmerFlash∧TurnIndLvr > 0)

REQ-009 Tip flashing «Constraint»
F(Voltage > 80 ∧ ¬(Left ∨ Right) ∧ Left1 + Right1 =
1∧FlashCtr < 3)

28 Industrial-Strength Model-Based Testing

Figure 8: State machine switching indication lights.

Figure 9: Decomposition of control state FLASHING.

	1 Introduction
	1.1 Model-Based Testing
	1.2 Objectives of this Paper
	1.3 Outline

	2 A Reference MBT Tool
	3 Modelling Aspects
	3.1 Modelling Formalisms
	3.2 A Sample Model
	3.3 Semantic Models
	3.4 Conformance Relations
	3.5 Test-Modelling Related Challenges

	4 Requirements, Test Cases and Trustworthy Test Strategies
	4.1 Requirements
	4.2 Requirements Tracing to the Model
	4.3 Test Cases
	4.4 Model Coverage Test Cases
	4.5 Automated Compilation of Traceability Data
	4.6 Test Case Selection According to Criticality
	4.6.1 Test Strategies Proving Conformance

	4.7 Challenges to Test Case Generation and Test Strategy Design

	5 Conclusion
	A Case Study: Turn Indication Control Function

